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1. INTRODUCTION TO FINITE ELEMENT METHODS,
ALGORITHMS AND IMPLEMENTATIONS

I. I Structured and unstructured meshes

The recent rapid development of solution algorithms in the field of computational
mechanics means that it it presently possible to atlempt the numerical solution of a
wide range of practical problems. The essential pre-requisite to a solution process of
this type is the construction of an appropriate mesh to represent the computational
domain of interest. In this section, we will briefly outline two alternative stralegies
for accomplishing this task of mesh generation and make some observations about the
implications to the analyst arising from the choice of approach which is made. In the
discussion, we will assume, for brevity, thal the mesh is to be produced for a two
dimensional domain.

In the most widely used approach {1,2], the domain is divided into a structured
assembly of quadrilateral cells. The structure in the mesh is apparent from the fact
that each interior nodal point is surrounded by exactly the same number of mesh
cells (or elements), as shown in figure 1.1. Note also that we can immediately
identify two directions within lhe mesh by associating a curvilinear coordinate
system (_,q) with the mesh lines. If we number the nodes consecutively along lines
of constant 1"1,and so that the numbers increase as _ increases, we can immediately
identify the nearest neighbours of any node J on the mesh, as shown in figure 1.2.
Generally, such grids are constructed by mapping the domain of interest into a
square and then conslructing a rectangular mesh over the square. If the equation
itself is also mapped, this grid can be used to obtain a solution, otherwise the inverse
mapping is applied to obtain the required mesh over the original domain. Various
approaches may be regarded as candidates for accomplishing the mapping, such as
conformal techniques, the use of differential equations or algebraic methods. All the
major discretisation procedures for the equations of fluid flow can normally be
implemented on meshes of Ihis type. A major advantage to lhe computational fluid
dynamicist arising from the use of a structured mesh is lhat he can choose an
appropriate solution melhod from among the large number of algorithms which are
available. These algorithms have the advantage thai they can normally be
implemented in a computationally efficient manner. A disadvantage is Ihe fact that it
is not possible to guarantee an acceptable mesh by applying the mapping method, as
described above, to regions of general shape. This difficulty can be alleviated by
appropriately sub-dividing lhe computational domain into blocks and then producing
a grid by applying Ihe mapping method to each block separately. This results in an
extrp.rnely powerful melhod 13], but problems can still be caused by the generation
of elemenls of poor quality and by the elapsed time necessary to produce a grid for
dr)mains of extremely complex shape.

Th_-_alternative approach is to divide the computational domain into an unstructured
as_emt)ly of computational cells as illustrated in figure 1.1. The notable feature of an
unstructured mesh is thai the number of cells surrounding a typical interior node of
ttm mesh is not necessarily constant. It will be apparent that quadrilateral cells
r:ould again be used in this context, as shown in figure 1.3, but we will be
concenlrating our attention upon the use of triangular meshes. The nodes and the
_lernents are now numbered and, to gel the necessary information on Ihe neighbours,
we store the numbers of the nodes which belong to each element (see figure 1.4).
From the detail of a typical unstructured mesh shown in figure 1.1, it is apparenl
thai Ihere is no concept of directionality within a mesh of this type and that,
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Figure 1.1 Slruclured and unstructured mesh discretization of a computalional
domain.
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Figure 1.2 Nearest neighbours of a node J in a structured mesh of n by m poinls
in the _, 11 directions

Figure 1.3 An unstructured quadrilateral mesh.



therefore, solution techniques based upon this concept (e.g. ADI methods) will not be
directly applicable. The methods which are normally adopted to generate
unstructured triangular meshes are based upon eilher the Delaunay 14] or the
advancing front [5] approaches. Discretisalion methods for the equations of fluid
flow which are based upon integral procedures, such as the finite volume or the
finite elemenl method, are natural candidates for use with unstructured meshes. The
principal advantage of the unstructured approach is thal it provides a very powerful
tool for discrelising domains of complex shape [6,7], especially if triangles are used
in two dimensions and tetrahedra are used in three dimensions. In addition,

unstructured mesh methods naturally offer the possibility of incorporating
adaptivity [8]. Disadvantages which follow from adopting the unstructured grid
approach are that the number of alternative solution algorithms is currently rather
limiled and that their computational implementation places large demands on both
computer memory and CPU [9l. Further, these algorithms are rather sensitive to
the quality of the grid which is being employed and so great care has to be taken in
the generation process.

1.2 Discretisation techniques

When an acceptable mesh has been obtained for the compulational domain of interest,
the analyst is then faced with choosing a discretisation method. This will form the
basis of a suitable algorithm for solving the governing differential equation on this
mesh. The most widely used discretisation techniques are the finite difference
method, the finite volume method and the finile element method [10]. We will
illustrate briefly the essentials of these three, approaches by considering the
application of each method to the solution of a problem of steady linear heal
conduction in a two dimensional region, _, which is bounded by a closed curve, r.

The temperature distribution T(x,y) will satisfy Laplace's equation

a2T o_2T
div(grad T) = o_x2+_y2 = 0 in _ (1.1)

subject to appropriate boundary conditions. For convenience, we may assume here
thal the boundary conditions are given in the form

T -- g(x,y) on r (1.2)

i.e.. lhe value of the temperature is specified at all poinls of the boundary curve.

_[l)_ .ELni_-le_Di_{[_renceMethod

[or lhe purposes of this section, it is sufficient lo assume thai equation (1.1) is to
b_ solved on a structured square mesh, of the lype shown in figure 1.5. We can adopt
a convenienl coordinate syslem, such thal a typical poinl on the grid has coordinates
(,IA,KA). If we use the subscripts JK to denote an evaluation at this point, equation
(1.t) leads to the exact relationship

';I+ =0 (1.3)
aX2 JK JK



__E__I_m g n t Nodes
1 5 8 9
2 9 8 12
3 8 7 12
4 6 7 8
5 5 6 8
6 5 9 10
7 11 5 10
8 3 5 11
9 3 4 5

10 1 4 3
11 4 6 5
12 1 6 4
13 1 2 6
14 2 7 6

10 9

11 12

3

2

Figure 1.4 Conneclivity array for an unstruclured lriangular mesh.
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Figure 1.5 Struclured square mesh of constant mesh size A.



Using standard central differencerepresentationsfor the secondderivalives,this
equationcan be approximatedfor all interiorpointsas

Tj÷IK-2TjK+Tj_IK TjK.I-2TjK+TjK_I
_2 + t_2 = 0 (1 .4)

which is an equation coupling the values at the five mesh points illuslrated in figure
1.6. Writing an equation of lhis lype at each interior point on the grid and
incorporating the known values along the boundary, the resulling equation set can be
represenled in a matrix form

K [ = _ (1.5)

where K is a symmetric constant matrix, r is the vector of unknowns and I is the
force vector which contains information from the boundary conditions. This equation
system may be solved by using any suitable procedure. The important point to nole
here is that the matrix system can be formed directly from the approximation of
equalion (1.4). This leads to efficient compulational implementations, with low
slorage demands and high vectorisation possibilities.

T__heFinite Volume Method

The finite volume and finite element methods can also be implemented on structured
grids, but we will assume here that we are to use these methods on a given
unstructured triangular grid (see figure 1.4). A possible finite volume
discretisalion for equation (1.1) follows from the requirement that this equation
should be salisfied in an integral sense over each cell e i.e.

I a2T]
_:)e

(1.6)

where _,2,,is the area of cell e. Using the divergence theorem, this equation may be
wrillen as

; ndr =0
]'e

(1.7)

whewe I,, denotes lhe boundary of cell e and n is the oulward normal direction to this
b_mdary If we associate the unknown T e with cell e, this equation can be

approximated as
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Figure 1.6 Computational stencil for Laplace's equation.

Figure 1.7 Finite volume discretization
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(Tes-Te)
Aries

S=l
8,,s = 0 (1.8)

where the summation extends over the three sides of the cell e, Tes is the unknown in
Ihe other cell es which is adjacent to side s, 8es denotes the length of side s and Anos

is the projection onto the normal to side s of the distance between the centroids of the
cells e and es (see figure 1.7). When each cell in the mesh is considered in this way,
we are led again to a system of equations which can be written in the matrix form of
equation (1.5). Note that a convenient data structure in lhis case would be to number
each cell side in the mesh and to store the numbers of the two cells which are
adjacent to each side. Equation (1.8) can then be formed by looping over the cell
sides and sending the appropriate (equal and opposite) confributions to the adjacent
elemenls. In this form, the conservation properties of the resulting scheme are
immediately apparent as the total contribution made by each interior side is zero.

Variational Formulations

Finally, we illustrate how the finite element method can be used to discrelise
equation (1.1) on an unstruclured triangular grid. The starting point is a varialional
formulation of the problem [11]. Let 3 denote the set of all functions T which satisfy

Ihe problem boundary condition T = g(x,y) on F"and let I_ denote the set of all
functions W which satisfy W = 0 on r. In addition, we shall see that the type of
variational formulalion which is employed will place certain differentiability
conditions upon the members of these sets. A possible variational formulation for the
above problem could now be : find T in 3 such that

f {c-_l a2T 1
_2

(1.9)

lot every W in I_. The sets 3 and W are termed the trial function and the weighting

function sets respectively. I! will be apparent that the integral appearing in equation
(1.9) is valid mathematically provided thai the trial functions have continuous first
derivatives, while the weighting functions may be discontinuous. It follows
immediately thai the function T which satisfies this variational formulation will be
idonlically equal to the solution of the problem as posed classically in equations
(1.1) and (1.2).

An _lternative, so-called weak, formulation can be obtained by using the divergence
theorem in equation (1.9) and applying the fact thal each function W which is to be
_:on.,;idered will vanish on I". The resulting formulation can be slated as " find T in T
sHch lh_l

St T W aTaW}_x _x + _y _-y
_2

d(_ = 0 (t .t 0)

for each W in I_. Note that the trial function set may now be widened, as equation

(1.10) requires only thal the trial functions be continuous. At the same lime,

10



slricler condilionsneed to be applied to the members of the weighting function set,
which must also now be conlinuous. Assuming lhat the actual solution is sufficiently
smoolh so that the steps involved are malhematically valid, il is readily observed
thal the above steps may be reversed and equation (1.9) regained. It follows lhat the
solulion of the weak formulalion will also be identical to lhe solution of the original
problem posed in equations (1.1) and (1.2).

I_h___aLef._kin Method

The Galerkin method is a widely used approach for constructing an approximate
solulion to a problem posed in a variational form [12]. We begin Ihe process by
selecling a basis N_, N 2, N3........ for W. This means that each weighling function can
be expressed as a linear combination of these basis funclions and we indicate this by
defining W by

={WIW=alNI+a2N2+a3N3+ .......... ; W=00nr} (1.11)

where al, a2, a3.... denole arbitrary constanls. Note thai each Nj in the basis must
salisfy the condilion Nj = 0 on r'. We can employ a trial function set which is closely

linked to I_ and is defined by

1 = { T I T = g + blNl+b2N2+a3N3+ .......... ; T = g on r} (1.12)

where b_, b2, b3 ..... denole arbilrary constants. This set has been carefully
conslrucled so thai each member of the set satisfies the required conditions on I". If
we define l-(p) and 14(p) as the subspaces of 3 and la respectively which are spanned
by lhe first p basis functions i.e.

3(p) = { T(p) { T(p) = g + blNl+b2N2+baN3+ ..... +bpNp; T(p)= g on F}

W(p) = { W(p) I W(p) = alNl+a2N2+a3N3+ .......... +ap Np: W(p) = 0 on r )

(1 .13)

lhen lhe Galerkin method is !o seek an approximate solution to the varialional

formulalion of equalion (1.10) in lhe form : find T(p) in 3"(p) such that

--_x + ,_v -hv d.Q =0 (1.14)
hf

f()f each W(p)in W(p) . However, since N_, N2, N3......... Np forms a basis for l#(p),
equ_lion (1.14) can be replaced by the equivalent statement : find T(p) in 3-(p) such
lhal

_X--+ -_-_ d_2=O i= 1,2,3 ........ p (1.15)
(,t

11



Insertingthe assumedform for the functionT(p) from equation (1.13) gives

L_xx ax + ay _--jd(:2 bj=
K=I

ax + ay  -yJ
d_

(1.16)

K = 1, 2, 3........ p

which can be written in the matrix form

Kb=I. (1.17)

This equation can be solved to determine the unknown coefficients bl, b2...... bp and
so complete the approximation process. These unknowns only give information about
the value of lhe approximation at any point when they are combined as in equation
(1.13). Note thai K is symmetric and will, in general, be a full matrix.

The Finite Element Method

The Galerkin finite element method results from making a particular choice for the
basis functions in equations (1.11) and (1.12). Although more sophisticated
represenlations are possible, we will consider here only the case in which, given a
general grid of triangles, we place nodes at the vertices of each triangle and associate
an unknown Tj and a piecewise linear shape function Nj with each node J. In this case,
the shape functions are constructed (see figure 1.8) such that (a) Nj takes the value
unity at node J and the value zero at all other nodes (b) Nj varies linearly (c) Nj is
only non-zero on the elements associated with node J. For notational purposes only,
il will be convenient to assume that the nodes have been numbered such thai nodes 1

I0 p ai'e interior nodes while nodes p+l to q lie on the boundary. We define rs to be
lhe assembly of the straight sides in the mesh which join the boundary nodes, so that
I_ is an approximation to the exact boundary r. The given function g(x,y) defined on
I in equation (1.2) is approximated on rs by the function g(s) constructed as

g(s) = 2.._Tj Nj
J=p+l

Tj = g(xj.yj) (1 . 1 8)

;_nd this approximation is exact at each of Ihe boundary nodes. We work with spaces,
of dimension p, defined by

"i(_,) = { T(p) I T(p) = g(s) + T1NI+T2N2+T3N3+ ....... +TpNp ; T(p)= g(s) on I"s}

h)(r,) -_ { W(p) I W(p) = alNl+a2N2+a3N3+ .......... + apNp ; W(p) = 0 on [s}

(1.19)

12



Figure 1.8 Shape function associaled to node j



where we have indicated in the definition of "]'(p) thal lhe coefficient of Nj Is now the
vahJe of T(p) at node J. The Galerkin procedure is followed exactly as above, with
equation (1.16) being replaced by the requirement that

/_xx ax + ay a-yJ
d_2 T K =

- ax
a N j aNK_ d _ TK

This equalion set can again be writlen in a matrix form

J=1,2,3 ........ p

(1,20)

KT=f (1.21)

where I is now a vector of the unknown approximations to the nodal values of the
temperature and a typical entry in the matrix K is given by

f lohNj aNK a N J aNK }[K]JK= [-aX ax + ay ay d_ (1,22)

To evaluale these entries, we make use of the local nature of the defined shape
functions and the result thai the integral over Q is equal to the sum of the integrals
over the individual triangles _:2e [12] i.e.

E

j'{ .} d_;_ = 7_, Je {') d_;2 (1.23)_. e=l

This means thai the malrix K can be wrilten as

E

K = _'. K e (1 .24)
e=l

where lhe individual elemenl malrices K e have lypical entries

f /__NJ_NKe - aNj_aNK e }IKIj, _-= [ _x ax + _-v -i)-v- dq
(1.25)

t-h._r(_N j" h;ts been used to indicate the value of the shape funclion Nj on element e. We
note lhal the only shape functions which are non-zero over element e are those

14



associated with the nodes J, K. L of this element. This in lurn means thai there will

b_ only 9 non-zero entries in K e which will occur in lhose positions which are in

l_)oil-1 rows J, K.L and in columns J, K, L. Explicit expressions for the shape functions

over element e are readily determined from the conditions which were used in their
definition. If

Nj e= Aj e +Bj ex + Cjey

where A; '_ , aj e , Cj e are constants, it follows thai

(1.26)

(XK_(L___ Bje= (yK- YL) (XL- XK) (1.27)
Aje = 2_e 2_e Cje = 2 i"2e

The non-zero entries in lhe element matrix K e can be obtained by direct integration

e.g.

1

[Ke]KL = 4_ e {BKe BLe + CKeCL e} ( 1 . 28 )

With Ihe contributions from a typical element computed in Ihis fashion, it is then
possible to assemble lhe contributions from all the elements in Ihe mesh, according

to equation (1 24) and thus Io obtain the final form for K. The right hand side vector

I in equation (1.21) can be similarly evaluated. The symmetry of K should be

apparent from equation (1.28) and it should also be observed thal lhis will be a
_par.se matrix.

A ('ompuler implementation of lhis method would follow identical lines, with the

mahix K being delermined from a loop over lhe elements. As each elemenl is
considered, the non-zero lerms in its element malrix are determined from

r_xpressions such as equalion (1.28) and these are assembled into the correcl

Io{;alion._ in K, making use of the stored connectivity information, which gives the

nod_ b_longing Io each element.

g)l_lim_a!lityof lhe Galerkin Me_hl_b#..d

r_r ;t linear elliptic differential equation, of the type which has been considered

above,, it is possible to prove that an approximale solution constructed via the

(_al_kin method possesses a certain optimality properly [11]. To demonstrale this,
r,_Jpl_O_ that we have chosen a suitable sel of basis functions and a value for the

dim_n.sion p of the subspace to be considered. We know from equation (1.14) that lhe

(_al_,zkin approximation will satisfy

._" l___Tlp)_,)Wlpj a-T-_ aW-W-I_ } dO. = 0 (1.29)[ ,,)x ,-)x + _y ay

l()r any W_p) in I,I)(p). As each W(p) is in l#(p), we can deduce thal each W(p} is also in I#,

since I_'(r, t is a subspace of I#. Thus, from equalion (1.10) the exact solulion T will

;llno nalisfy Ihe equation

t')



_"{0-r_w__ _T0w___lax + _ ay j d_=O (1.3o)

Sublracting equation (1.29) from equation (1.30), we can deduce that the error _ =
T - T(p) in the Galerkin approximation satisfies

I {a_.._w_w__ax a_ayaVV(p_lay J+ dQ -- 0 (1.31)
,a

for every W(m in I_(p) Now choose any other function U(p) from the trial function set

3-(p_. The objeclive is to show that such a function will always be a worse
approximation to the exact solution, according to some measure, than Ihe Galerkin
approximation. Define '

where

_,,= T - U(p) = T -T(p)+ T(p)-U(p}= c + V(p) (I .32)

V(p) = T(p) - U(p)

By direct subslitulion, it can be shown that

(1.33)

/t 0o-- }0°Lr)xJ + Lo_yJ + Layj

+ 2 _-X ax + _-y ay I d_ + L ax g + L c)y J

(1.34)

d(2

From Ihe construction of equation (1.33), V(p) must be a member of the set I._(p) and
_o lhe second term on the right hand side vanishes, by equation (1.31). The third
term on lhe right hand side is slriclly non-negative and so we deduce lhat

LaxJ t d_ (1.35)LaxJ + Lr_yJ - + LayJ

16



Inlroducinglhe notation

f { P I" +La×J L@yJ j d_2
Q

(1.36)

il can be seen that equation (1.35) can be written as

I1_11 -> I1¢11 (1.37)

Since lhe function U(p) was arbitrarily chosen from lhe set "]'(p), we have lhus
demonstrated the optimality of the Galerkin approximation T(p) among the set of
functions "](p) according Io the error measure defined in equation (1.36).

1.3 The Finite Element Method Applied to the Compressible Euler Equations

Wilh lhe essentials of the finite element approach briefly outlined above, we can now
consider facing the more challenging problem of developing a finite element scheme
for lhe solulion of the two dimensional compressible Euler equations. The
di._c.r_.fi._alion of the equations is to be accomplished using a mesh of linear triangular
elemp.nl._. A Galerkin approach will again be applied, but the hyperbolic character of
lhe equation set means that optimality, in the sense of equation (1.37), can no longer
be e_lablished The approach to be followed will employ the time dependent form of
lhp, equalions and steady slate solulions will be computed by means of a false
Iran_;innl A finite difference method will be used to advance the solution in time,
which means Ihat the variational formulation will be applied to the space dimensions
only, in exactly the same form as above.

Jim Iwo dimensional equalions governing compressible inviscid flow are considered
in lhe conservation form

@U @E aE

where tile unknown vector U and the flux vectors E and F are given by

[:o] i u] [0v]L_= = Pu2 + p puv

l Vl [ , E=/
(pE + p)uJ L(pE + p)vJ

I ter_. p, p and E denote the density, pressure and specific total energy of lhe fluid,
whil_ vmand v are the components of the fluid velocity vector in the x and y directions
r_lDeclively. The equation set is compleled by the addition of the perfect gas equation
of sl;tl_

17



1 2
P -- (7- 1) p [E - 2(U + v2)]

where y is the ratio of lhe specific heats.

Time-SteoDin0 Scheme

To develop a time-stepping scheme for equation (1.38), we consider a Taylor
expansion in time [13} in the form

(1 .40)

U = +At al I + 2 at2[ (1.41)

where the superscript n denotes an evaluation at time t=t., the limestep At = t.+l -
t.. and t.+e = tn + e At, 0 < 0 < 1. This equation may be re-written, using equation
(1.38), to give

ALL = - At ale F
+ ayy "-2-[_x + _y _,_)J

(I .42)

n+l n

where _U = U_ - U . A solution algorilhm can be produced by constructing a suilable
linearisation for the second order terms on the right hand side of this equation. A
straightforward linearisation [14] leads to the equation

AU_--:;;- _ A"A n- n
aX + AnB ay + _ BnA n- n nax + B B a-y; jj

(1.43)

where

A= dE e=dEdU (I .44)

and the approximations An+1= A" and B"_ = B n have been made.

G_%llllllll_kin__FinileElement ADproximalion

The problem of determining the AU_ which satisfies equation (1.43), over a domain

(_, can be put into a varialional form by defining trial and weighting function sets as
beforP. It will be convenient to assume Ihat the boundary values of U on r are

independent of lime and that these values are already satisfied by U n. Physical

18



bnundaries such as solid walls require a different treatment which will not be
con._idered further here. Then we can define

_- = { aU I ,_U : 0 on F }

and seek, for each n, AU in 1 such that

={WlW=0onF} (1.45)

. 2 _-x AriAn #-----_ + A nBn _j

+_.; o_--X---+ enB n o_y +t_t + ayJ (1.46)

for all W in W. A weak variational formulation may be produced by using the

diverqence theorem. The variational statement then becomes • find, for each n, AU in
I such that

[W ALl + _-,,- AriA "- + AnB n. c)x

#w [ a(,_u)+-_,Y-BnAn .... ,]X
a(AU_)-[,

+ BnB n _yy _j. ]d_

At W _x + e_yJ dE2 - _x An _y B n !_XX + olyJ
.(2 '"

_2

(1 .47)

d_

Wn will assume that the spatial solution domain, _, has been discretised using 3

r,_d_,d linear triangular elements, with the inlerior nodes numbered from 1 to p, and
(h:finr_ the sets

l(m :- ( A_pl [ AU(p ) = N, ,_UI+N2 AI,,L2+..... +Np,__U_p; A U..(m= 0 on F}

h,(p! = { W(p) I W(p) = alN_ +a2N2 + ..... +apNp ; W(p)= 0 on F}

(1.48)

where a_, a_ ...... ap are constanls. The Galerkin approximalion determines the values

¢)f the nodal unknowns ,_U_, a,_lJ..2........ A._ by inserting AUIp I into the equation

(I,17) and satisfying the resulting equalion for each W(p)in l#(m. When AU(m has

hrmn dnle_mined, the solulion is updaled according to Urn) "*_ = U_m% z__.l.l_p)
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An Explicit Time-SteDpina Scheme

If Ihe value of e is set equal to zero in equation (1.47), the Galerkin statement takes
Ihe form

ax + ay J

(1.49)

2 [_-- A (p)n + _ B (p)n + ay d.Q = 0

for J = 1, 2........ p. Although F,.(p),.E.(p), A(p) and B(p) at time level n could be
expressed directly in terms of U(p)n and the right hand side of this equation evaluated
by numerical integration, a convenient computational implementation is produced by

linearly interpolating F,,,..(p)and _p) over each element and taking A(p) and Bin) to be
element-wise constant. The terms in equation (1.49) may now be evaluated exactly,
by assembling lhe contributions from individual elements, and the resulting set of
equations written in the form [15]

where

]j
K=I

K A-U-K= ]_L-H.._S.J (I .50)

[M]jK =J Nj N K d_ (1.51)

In the form of equation (1.50), the time-stepping scheme is implicit, as the
consistent mass matrix M is not diagonal. In Iransient simulations, lhis equation is
solved by explicit iteration {16]. For steady stale problems, the simplification of
replacing the consistent mass matrix by lhe standard lumped (diagonal) matrix
{12], with non-zero diagonal entries [MLIj, can be made, thus producing an explicit
scheme. This explicit scheme is identical to the one step Lax-Wendroff melhod {10]
when it is implemented on a mesh of linear elements in one dimension.

_Arlili.c_i_l Dissipation

For the successful simulalion of flows wilh steep gradients, the explicit scheme
do.scribed above needs the addition of an appropriate artificial viscosity model. The
slandard approach is to smooth the compuled solution at the end of each lime step
before proceeding wilh lhe computalion. The smoothing can be regarded as lhe
applicalion of an explicit diffusion with a suitably defined diffusion coefficient. A
convenient melhod of achieving this effect, follows from the observation that, on a
mesh of linear elements, there is a relatively simple way of approximating a
diffusion operator. At an interior node J on a mesh of linear elements in one
dimension [17],
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[ (ME) 1 _,(rnE - mLE ) .U..E]j = 6 ( h2 dxx )J (1.52)
E

where h(x) is the local mesh size. The summation in equation (1.52) represents the
operalion of assembly of element values and m E, rnLE and UE denote the element mass
malri×, elemenl lumped mass matrix and element vector of nodal values of U
re._p_.clively. By direct extension, on a general 2D mesh of linear elements, the
smoolhing in the case of the Euler equations is accomplished by replacing the
computed nodal values .U.jn*r by smoothed values U.sj"*1 according to

[ML] J (__jn,l _ .u_jn+l ) = _ kE {[mE]JK - [mLE]JK} UEK n*1

E

(1.53)

Here k E iS a pressure-switched artificial diffusion coefficient, which is computed as
the mean of element nodal values kj defined according to

{lmE]JK - [mLE]JK} 12-EK
kJ = Cu'_' I{[mE]JK " [mLE]JK} ___K I (1.54)

E

where C,. is a user specified constanl, P-Eis the vector of element nodal pressures and
I • I denotes that absolute values of the elemenl contributions are assembled. The
coefficient kj lakes values ranging from 0 to 1 and it can be shown that kj = 1 when
Ihe pressure has a local extremum at node J. In equations (1.53) and (1.54) the
summation exlends over all elements E which belong lo node J. The effectiveness of
this arlificial viscosity model, when it is applied in conjunction with the explicit
time _loppinq procedure outlined above, is illustrated in figure 1.9 which shows the
r_._ull of a computation of the steady flow past a circular cylinder, at a free stream
M;_(:h m.nher of 3. Furlher examples, including a Iwo slep variant of the solution
alqorilhm, can be found in a number of publications [18,19].

h !!ig h_R_lu iI_o_m_E__

The easiesl melhod of producing a scheme of higher resolution on a general
un._Iruclured grid is Io apply the flux corrected Iransporl (FCT) ideas of Boris and
t3(_ok 120] and Zalesak [21]. In their notation, we identify the basic explicit scheme
wilh no added artificial viscosily as the higher order solution, while the basic
_h_,..; pI.s the addilion of a hefty amount of arlificial viscosity is the lower order
';_hdi_r_. The low order scheme must have the property thal it produces monotonic
"_r_hHir_n_for lhe problem under investigation. By combining the two schemes, the
_hj_(;live is Io remove as much of Ihe arlificial viscosity as possible, while still
rn;_i.laininq monolonicily. This is achieved by limiting the contributions made by the
individual elements to Ihe amount of added artificial viscosity. The first triangular
qrid h.plernenlation of these ideas was made by Parrolt and Christie [22J, in lhe
(.<_fll_×l _)f a single transport equation, and applications to Ihe Euler equations have
_115_her_rl made [23,24]. A demonstration of the effectiveness of the procedure is
(liv_.n in tiqure 1.10, which shows the results produced when lhe method is applied Io
the ,_olution of Iransporl in a rotational velocity field. In figure 1.10a we see the
i.ilial ¢_c_ncenlration, which lakes the form of a circular cylinder with a cut-out. In
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Figure 1.9 External flow past a circular cylinder (Moo : 3)
(a) Enlargement of the mesh near the cylinder
(b) Convergence curve of the L2 norm of the density residual

(c), (d) Contours and wall plots of the Mach number
(e), (f) Contours and wall plots of the pressure coefficient
(g) Flow detail behind the cylinder
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(a)
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Figure 1.10 FCT algorithm

(a) Initial solution

(b) Solution after 628 timesteps (1/4 revolution)



fi.clure 1.t0b we show the computed profile after 628 time steps (one quarter
relation) of the FCT algorithm. It is observed from the results that accuracy of this
._ch_me compares well with more coslly Riemann-solver based schemes.

Af_ ILn_plicit Time-Sleppino Scheme

If a value of 0 other than zero in used in equalion (1.47), lhe Galerkin statement
leads to an implicit procedure [14] of the form

_'. IL]jK A.U._K =BJ::_ (1.55)
K=I

where L can be expressed as

L= M+0 K (1.56)

For computational efficiency, in steady stale simulations, lhe simplification of
neglecling lhe cross derivative terms in the construction of K is generally made and
this does not seriously affect the convergence behaviour of the method. Schemes of
this type appear to possess certain desirable features e.g. it may be possible to apply
them in the simulation of transonic flows without the necessity for inlroducing
arlilicinl diffusion [25]. As the identification of appropriate smoothing mechanisms
for elements which are higher than linear in order is still an unsolved problem, this
approach would then allow the possibility of producing an algorithm which could be
implemented on quadratic elements. This would certainly have associated accuracy
benefits on general grids.

However, although the direct solution of the equation system (1.55) can be
contemplated for certain lwo dimensional flows, efficient ilerative techniques are
need_;d if an implicit approach is Io be adopted for any realistic three dimensional
_imulnlion. Ilerative stralegies based upon the use of line relaxation have met wilh
cerWain success within the context of finite difference methods on structured grids
I101. On such grids, the grid lines themselves can serve as appropriate lines for the
relaxation process. To describe such a process, it is useful Io introduce a
renlJmb_.ring operator _') associated Io a line such that o(.U.)denotes the vector of

nodal unknowns re-arranged in the order implied by the line. The equation system
(1.55) is then written as

__._ !,_)([L]jK)I') "1 I_)(ALLK) = _(_)

K=I

which leads to a new equalion system of the form

(1 .ST)

P

,_[L"
J=l

I,K ALE = BH_ " (1 .58)

24



If the matrixL" is now decomposed as

L" = D" + (L" D') (1.59)

where D* is the block tri-diagonal of L*, this would allow the use of the relaxation
scheme

0 fE [D']jK A.U._k('*I) =RHS_*- ([L']jK -[O']jK ) AUk (r)
K=I K=I

(1 .60)

where Ali'(o) is taken to be the last compuled increment and r is the iteration count.
A possible two dimensional implementation would therefore use the two families of
mesh lines, wilh one iteration on each line every timestep. The block tri-diagonal

matrices D" can be factorised every timestep or there is the possibility of using the
same factors for several iterations. A further refinemenl would be lhe incorporation
of a line search minimisation.

On unstructured triangular grids, lhe idenlificalion of suilable lines, for use with a
line relaxation scheme of this lype, is not immediate. Recently [26], it has been
shown thai il is possible to employ a rather simple mesh processing algorithm to
accomplish Ihis task.

An Algorithm for Constructing Lines in an Unstructured Triangular Mesh

Here we describe a general procedure for constructing a line (or lines) through a
general triangular mesh which passes through each node of the mesh once only. The
elernenls, nodes and sides in the mesh are numbered. The algorithm to be described
will then make use of lhe following conneclivily arrays, which need to be determined
before the process begins:

[ F.P (IN:I :3; IE=I :NE)

I EE (JE=] : 3; IE=I :NE)

TES (IS =1:3; IE=I:NE)

The three nodes of element IE.

The three elements sharing the sides of element IE.
The three sides of elemen! IE.

In addilion, the following arrays will be used during the construclion process:

],PM (] :NP)

[,I<M ( 1 :NE)

I,LFI(] :NS)

Node marker.
Element marker.
Side marker.

nr_(:l a list _,sE, which is initially empty (NLSE=0), which contains the so-called
active elements, in ascending order of a specified key variable . The elements in the
li,;l are kepl in a heap dala structure. Given a prescribed direction n, the recursive
_lgorilhm proceeds as follows:

Set I.,PM(I:NP) = 0

Set LEM (1 : NE) : 0

Set [,sM(] :NS) = 0
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2 .- Select any element as a starting element zE.

3.- Let iPi, island IEifori = l : 3 be the three points, sidesand
surrounding elements of Ihis element IE.

IF(LPM(IPi) _ 1 foranyi = 1:3)THEN

FOR i = 1:3 DO

LSM(ISi) = LSM(ISi) + 1

LPM (IPi) = 1

IF(LEM(IEi) = 0) THEN

LEM(IEi) = 1

Insert element IEi into LSE
NLSE = NLSE+I

ENDIF

EN3DO

END(F

according to KEYi

4.- Select a new element IE

IF(NLSE :_ O)THEN

NLSE = NLSE-I

IE = LSE(1)

C-:_)TO 3
ELSE

End process.The sides TS forwhich LSM(TS)

ENDIF

= 1 form lhe line.

In the above KEYi is evaluated as the absolute value of the scalar product between n
and the unit vector in the direction joining the cenlroids of elements iv. and IEi.

The operation of this algorithm is illustrated by considering the mesh of 18
triangular elements with 16 nodes shown in figure 1.11a. In this example direclion-
ality is not taken into account, which means that elements are inserted inlo the list
].,sF; without any directional preference. Starting from any element e.g. element 11,
the side marker for sides 8-9, 9-11 and 11-8 is set to 1. At this stage, the line
consists of these three sides. The node marker for nodes 8, 9 and 11 is sel to one and
the adjacent elements 10, 12 and 6 are marked and inserted into t,SE. NLSE is now
equal to 3. The first element in LSE, which is element 10, is selected and, as one of
its points is not marked, the marker of its sides is incremented by one. This means
that the common side with element 11, i.e side 11-8, is deleted from the current
line and the sides 7-8 and 11-7 are added to the line. The marker for node 7 is set
to one and the unmarked adjacent elements 3 and 9 are marked and inserted into LSE.
The situation is then as shown in figure 1.11b. The procedure is continued, with the
next slage being illustrated in figure 1.11c, until all the elements have been
considered, i.e. NLSE is equal to zero. At this point, a line will have been constructed

which passes through each node in the grid once and only once, as shown in figure
1.1 Id.

When the above algorithm is applied to the triangular mesh shown in figure 1.12a, it

produces the lines shown in figures 1.12b and 1.12c, when two directions at right
angles to each other are prescribed.

An example is given which illustrates the numerical performance of the fully
implicil algorilhm of equation (1.55) when the solution is obtained via the
relaxalion procedure of equation (1.60). The example consists of an inviscid flow
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Figure 1.11 The construction of a relaxation line on an unstructured mesh
showing (a) starting line (b) line after one stage (c) line after two
stages (d) final line.
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(a) (b) (c)

Figure 1.12 Unstructured line relaxation (a) unstructured mesh (b) 'horizontal'
line (c)'vertical' line.
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Figure 1.13 Unstructured line relaxation (a) detail of the mesh (b) 'horizontal'
line (c) 'vertical' line (d) Steady slate pressure contours (e)
convergence curve.
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over a NACA0012 airfoil with a free stream Mach number of 0.85 and 10 angle of
a11ack of one degree. The unstruclured triangular mesh employed consists of 8378
elements and 4292 points and a detail of the mesh is given in figure 1.13a. Details of
lhe lwo lines used for the line relaxation procedure are shown in figures 1.13b and
1.13c. The computed steady slate pressure contours are shown in figure 1.13d. The
convergence behaviour of the implicit procedure is compared with thai of the ex-
pli_:i! approach of equalion (1.50) in figure 1.13e.
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2. GEOMETRY MODELLING

The problem of producing an unstructured mesh over a general computational domain
will now be addressed. The boundary of the domain to be discretised needs to be
represented in a suitable manner before the generation procedure can start. If the
automatic discretisation of an arbitrary domain is to be achieved, the mathematical
description of the domain topology ought Io possess the greatest possible generality.
The compuler implementalion of lhis description must provide means for
automatically computing any geometrical quantity relevant to the generation
procedure. Solid modelling provides [27] the most general up-to-dale set of
methods for the computational representation and analysis of general shapes
matching the above requirements.

In this section we give a brief description of the geometry modelling strategy that we
employ. More sophisticated representations giving more accurate definitions as well
as easing Ihe task of performing quick geometry modifications could be used [28].

In Ihe planar two dimensional case, the boundary is represented by closed loops of
orientated composite cubic spline curves [28]. For simply connected domains these
boundary curves are orientated in a counterclockwise sense while for multiply-
connected regions the exterior boundary curves are given a counter-clockwise
orientalion and all the interior boundary curves are orientaled in a clockwise sense
(figure 2.1).

In three dimensions, lhe domain to be discrelised is viewed as a region bounded by
surfaces which inlersecI along curves. The podions of these curves and surfaces
needed to define the three dimensional domain of inlerest are called curve and surface
components respectively. Figure 2.2 shows the decomposition of lhe boundary of a
three dimensional domain into its surface and curve components. The approximate
represenlation of the boundary components is accomplished by means of composite
curves and surfaces [28]. In addition, boundary curves and surfaces are orientated
(see figure 2.3). This is important in the generating process as it is used to define
the Iocalion of the region that is to be discrelised. The orientation of a boundary
surface is defined by the direction of the inward normal. The orientation of the
boundary curves is defined wilh respect to lhe boundary surfaces which contain
them. Each boundary curve will be common to two boundary surfaces and will have
opposite orientations with respect to each of them. An example of the approximated
geomelry for a surface component and its corresponding curve componenls is
displayed in figure 2.4. It can be observed thai lhe boundaries of the inlerpolated
composite surface can be arbitrary and are not required to coincide with those of the
surface component.

2. 1 Curve Representation

The parametric definition of a curve consists of a piecewise interpolation of cubic
polynomials through an ordered set of data points. The order in which lhese points
are given defines the orienlation. In the Ferguson representation [29], each cubic
polynomial is expressed, in lerms of the position and tangent veclors at the two end
points, as
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Figure 2.1 Boundary orienlation for a two dimensional domain.

BOUNI)ARY EDGES BOUNDARY FACES 3D DOMAIN

DISCRETIZATION PROCESS

Figure 2.2 Decomposition of the boundary of a three dimensional domain into its

surface and curve components.
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Figure 2.3 Orienlalion of the boundary components in three dimensions.
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Figure 2.4 Approximated geometry for a surface component.
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Figure 2.5 Interpolation of a piecewise cubic spline lhrough a set of data points.
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r_(v)=(lvv 2v 3} C

r( I )]

r_(2)|
.to')I
I(2) J

O<_v_< I (2.1)

where [(1) and .[(_) are the coordinates of the end points of the segment, l(1) and [(2) are
their respective tangents and C is a constant matrix given by

I 1 0 0 0 1
C= 0 0 1 0

-3 3 -2 1 (2.2)
2 -2 1 1

The langenl to the curve is computed according to

dr(v)
L(v) = r.'(v) = (:Iv ( 2.3 )

The number of data poirts, and their spatial distribution, should be given in such a
manner thai the interpolated curve accurately approximates the inlersection of the
corresponding surface components. The interpolation problem, which is illustrated
in figure 2.5, consists of fitting a parametric spline, defined in a piecewise manner,
through a set of n points Ei; j=l ..... n. At interior points, continuity of slopes is
guaranteed for any choice of the tangent vectors, provided that a unique langenl
vector is used for the definition of the two adjacent cubic segmenls. However, by
employing a simple procedure [28], these vectors can be determined so thai
continuity of curvature is achieved throughout the interpolaled curve. At lhe two end
points, zero curvature is assumed. Note that the expressions given above are valid in
Iwo and three dimensions. The only difference in the two cases being the number of
components of the vectors r and I.

2.2 Surface Representation

The mathematical representation of a surface is obtained by interpolating a
composite surface, made up of quadrilateral patches, through a topologically
rectangular set of data points [4k;j=l ..... m ;k=l ....n (see figure 2.6). Two families
of parametric lines are obtained by interpolating spline curves, first through the
points of constant j and then through the points of constant k. The procedure used for
interpolating each spline curve is that described in the previous section. The
mathemalical expression for every quadrilateral surface patch is given, in terms of
the tour cubic curves that form its boundary and the twist vector at the four corner
points, as

r<=' Lw") / C' lw (2.4)
[(v,w) = (1 v v 2 v3 ) C L,v(1) L,v(4) L, vw(1 ) L,vw(4)/ W2

L,v (2) L,v (3) L,vw (2) r,vw(3)-J w 3

0_<v_< 1; 0_<w<_ 1

34
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Figure 2.6 Interpolation of a composite surface through a set of data poinls.
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where C is the matrix previously defined in (2.2), C "r is its transpose, and the
comma denotes partial differentiation, i.e.,

o_r o_r o_2r
-- . _ -- o

r,v = _v ' r.w dw ' r_,vw= o_vo_w (2.5)

Here the notation employed to denote lhe corner points of the patch is

r(')= r(O,O); [(2) = r(1,0); d 3) = [(1,1); [_4) = r(O,1) (2.6)

This representation uses a Hermite interpolalion between opposile boundaries of the
patch [30]. The twist vectors (r,v,)jk at the corner points are computed so that
overall second order continuity is achieved on the interpolated surface. The
implementation details of this algorithm can be found in 131]. For convenience,
global parametric coordinates u 1 and u2 are defined. For the patch (j,k) these
coordinates are relaled to the local patch coordinales v and w according to u1 = v + j
-1 and g2 = w + k -1. In this way, a global mapping r.(u_,u2) is established between

the rectangular region in the parametric plane defir,ed by 0 _<u1 _<p ; 0 <_u2 _<q and
the lensor producl surface. The orientation of the surface is defined by specifying the
oulward normal which poinls towards the region to be discretised.
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3. UNSTRUCTURED MESH GENERATION BY THE ADVANCING FRONT
METHOD

3. t The advancing front technique

The algorithmic procedure to be described for the mesh generation is based upon the
method originally proposed in [5] for two dimensions and then extended to three
dimensions in [7,18]. The advocaled approach is regarded as a generalization of the
advancing front technique [32,33] with the distinclive feature lhat elements, i.e.
triangles or telrahedra, and poinls are generaled simullaneously. This enables the
generation of elements of variable size and strelching and differs from lhe approach
followed in tetrahedral generators which are based upon Delaunay concepts [4,34],
which generally connect grid points which have already been dislribuled in space.

The generation problem consists of subdividing an arbitrarily complex domain into a
consislenl assembly of elemenls. The consistency of the generated mesh is guaranteed
if the generated elemenls cover the entire domain and the inlerseclion between
elements occurs only on common poinls, sides or Iriangular faces in the three
dimensional case. The final mesh is construcled in a botlom-up manner. The process
slarls by discretising each boundary curve. Nodes are placed on the boundary curve
components and then contiguous nodes are joined with straight line segmenls. In later
stages of the generalion process, lhese segments will become sides of some triangles.
The lenglh of these segments must therefore, be consistent with the desired local
distribulion of mesh size. This operation is repeated for each boundary curve in
turn.

The next stage consists of generating triangular planar faces. For each two
dimensional region or surface to be discrelised, all the edges produced when
discrelising ils boundary curves are assembled into the so called inilial front. The
relative orienlation of the curve components with respect to the surface must be
taken into account in order to give the correct orientation to the sides in the initial
front. The front is a dynamic data structure which changes continuously during lhe
generation process. At any given lime, the fronl conlains lhe sel of all lhe sides
which are currenlly available to form a lriangular face. A side is selected from the
front and a triangular element is generated. This may involve creating a new node or
simply connecling to an exisling one. After the triangle has been generaled, the front
is updaled and the generation proceeds until the front is empty. Figure 3.1
illuslrales lhe idea of the advancing front technique for a circular planar domain by
showing the initial front and the form of the mesh al various stages during the
generation process. The size and shape of the generated lriangles must be consistent
with the local desired size and shape of the final mesh. In the lhree dimensional case,
these lriangles will become faces of the telrahedra to be generated laler.

For lhe generation of lelrahedra lhe advancing front procedure is taken one step
furlher. The front is now made up of the triangular faces which are available to form
a letrahedron. The initial front is obtained by assembling the triangulalions of the
boundary surfaces. Nodes and elements will be simultaneously created. When forming
a new lelrahedron, the lhree nodes belonging to a triangular face from the fronl are
connecled eilher to an existing node or to a new node. After generating a telrahedron,
Ihp. fronl is updated. The generation procedure is completed when the number of
Iriangles in Ihe fronl is zero.
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Figure 3.1 The advancing front technique. Different stages during the
triangulalion process.



3.2 Characterisation of the mesh: mesh parameters

The geometrical characteristics of a general mesh are locally defined in terms of
certain mesh parameters. If N (=2 or 3), is the number of dimensions lhen, the
parameters used are a set of N mutually orthogonal directions .g,i; i=1 .... N, and N
associated element sizes 5i; i=1 .... N (see figure 3.2). Thus, at a certain point, if all
N element sizes are equal, the mesh in Ihe vicinity of thai point will consist of
approximately equilateral elements. To aid the mesh generation procedure, a
transformation T which is a function of _.i and 5i is defined. This transformation is
represented by a symmetric N x N matrix and maps the physical space onto a space in
which elements, in the neighbourhood of the point being considered, will be
approximately equilateral with unit average size. This new space will be referred to
as lhe normalised space. For a general mesh this lransformation will be a function of
position. The transformation T is the result of superimposing N scaling operations
with faclors 1/_5iin each c_i direction. Thus

N i
T(__i,Bi) = _ _T __i® g=i (3.1)

i=I ul

where ® denotes lhe tensor product of two vectors. The effect of this transformation
in two dimensions is illustrated in figure 3.3 for the case of constant mesh
parameters throughout the domain.

3.3 Mesh Control: The Background Mesh

The inclusion of adequate mesh control is a key ingredient in ensuring the generation
of a mesh of the desired form. Control over the characteristics is obtained by the
specification of a spatial distribution of mesh paramelers by means of a background
mesh. The background mesh is used for inlerpolalion purposes only and is made up of
lriangles in two dimensions and letrahedra in lhree dimensions. Values of o_i and 5i,
and hence T, are defined at the nodes of the background mesh. At any point within an
element of the background grid, the transformalionTis computed by linearly
inlerpolating its components from the element nodal values. The background mesh
employed must cover the region to be discretised (see figure 3.4). In the generation
of an initial mesh for the analysis of a particular problem, the background mesh will
usually consist of a small number of elements. The generation of the background
mesh can in lhis case be accomplished without resorting to sophisticated procedures
e.g. a background mesh consisting of a single element can be used to impose the
requirement of linear or constant spacing and stretching through the computalional
domain. The generation process is always carried out in the normalised space. The
transformalion T is repealedly used to lransform regions in the physical space inlo
reqions in the normalised space. In this way the process is greatly simplified, as the
dn._ired size for a side, triangle or letrahedra in this space is always unity. After the
elemenl has been generated, the coordinates of the newly created point, if any, are
transformed back to lhe physical space using the inverse transformation. The effect
of prr_.scribing a variable mesh spacing and stretching is illustrated in figure 3.5 for
a reclangular domain and using a background grid consisting of two Iriangular
elements.
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Figure 3.2 Characlerisalion of the mesh.
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3.4 Curve Discretisation

The discretisation of the boundary curve components is achieved by positioning nodes
along the curve according to a spacing dictated by the local value of lhe mesh
parameters. Consecutive points are joined by straight lines to form sides. In order to
determine the position and number of nodes to be created on each curve component,
lhe following steps are followed:

i) Subdivide recursively each cubic segment into smaller cubic segments until
Iheir length is smaller than a certain prescribed value. A safe choice for this
value is the minimum spacing specified in the background mesh but often,
considerably larger values can be taken. The length of each cubic segmenl is
computed numerically. When subdividing a cubic segment, the position and
tangent vectors corresponding to the new data points can be found directly from
the original definition of the segment.

^

ii) For all the data points ri; j=l ..... n (i.e. those used to define the curve and
those created to satisfy the maximum length criterion), interpolate from the
background mesh the coefficients of the transformalion Tjand transform the

position and tangent vectors i.e. '[i = Ti ri and i.j = Tj ti. The new position and

tangent vectors _-i.-Li; j=t ..... n, define a spline curve which can be interpreted as
the image of the original curve component in the normalised space. II must be
noted that because of the approximate nature of this procedure, lhe new curve
will in general have discontinuities of curvature even though the curvature of lhe
original curve varies continuously.

iii) Compute the length of the curve in the normalised space and subdivide it into
segments of approximately unit length. For each newly created point, calculate
the cubic segment in which il is contained and its parametric coordinate. This
information is used to determine the coordinates of the new nodes in the physical
space, using the curve component definition.

3.5 Triangle generation in two dimensional domains.

The triangle generation algorithm utilises the concept of a generation front. At the
starl of the process the front consists of the sequence of straight line segments which
connect consecutive boundary nodes. During the generation process, any straight line
segment which is available to form an element side is termed active, whereas any
segmenl which is no longer active is removed from the front. Thus while the domain
boundary will remain unchanged, lhe generation front changes conlinuously and
needs to be updated whenever a new element is formed. This updating process is
illustrated in figure 3.6.

In the process of generating a new triangle the following steps are involved (figure
3.7):

i) Select a side AB of the fronl to be used as a base for the triangle to be
generated. Here, lhe criterion is Io choose the shortesl side. This is especially
advantageous when generating irregular meshes.
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Figure 3.6 Front updating procedure in two dimensions.
(a) Initial gcneration fmnL

(b) Creating a new element (i) No new point is created
(2) A new point (19) is created

(c) Front updating for the case b.2.
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ii) Inlerpolale from the background grid the transformation T at the celltre of the
side M and apply it to the nodes in the front which are relevant to the

triangulalion. In our implementalion we define the relevant points to be all those
which lie inside the circle of centre M and radius three times the length of the

side being considered. Let _,, _. and IV!denote the positions in the normalised space
of the points A, B and M respectively.

iii) Determine, in the normalised space, the ideal position 151for the vertex of

the triangular element. The point 151is located on the line perpendicular to the

side thal passes through the point M and at a distance 61 from the points _ and J_.

The direction in which 151 is generated is determined by the orientation of the
side. The value 81 is chosen according to:

1 if 0.55-L < 1 < 2*L
81 = 0.55"L if 0.55,L < 1

2-L if 1 > 2-L
(3.2)

where L is the distance between points _ and J_. Only in situalions where the side

AB happens to have characteristics very different from those specified by the
background mesh will lhe value of 81 be differenl from unity. However, the above
inequalities must be taken into account to ensure geometrical compatibility.
Expression (3.2) is purely empirical and different inequalities could be devised
to serve the same purpose.

iv) Select other possible candidates for the vertex and order them in a list. Two

types of points are considered viz. (a) all the nodes (_1, (_2 -.- in the current
generation front which are, in the normalised space, interior Io a circle wilh

cenlre 151and radius r = 51, and (b) the set of points JS_..... P-sgenerated along the
^ _" A A

height P1M. For each point Q_, construct the circle with centre Qi, on the line

defined by points 15_and I_ and which passes through the poinls (_i,/_ and _.. The

posilion of the centres -Qi, of these circles on the line P__11_Idefines an ordering of
^ A

the the Q_points. A list is created which contains all the Q_ points with the
^ ^ /*,

furthest point from P1 appearing at the head of list. The points P1..... .P_sare added
at Ihe end of this list.

v) Select the best connecling point. This is the first point in the ordered list
which gives a consistent triangle. Consistency is guaranteed by ensuring lhat
none of the newly created sides intersects with any of the existing sides in the
front.

vi) Finally, if a new node is created, ils coordinates in the physical space are
obtained by using the inverse transformation T -1.

vii) Store the new triangle and update the front by adding/removing the relevant
sides.
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This mesh generation procedure is schemalically presented in the diagram shown in
figure 3.8

Mesh aualitv enhancement

In order to enhance the quality of the generated mesh, two
procedures are applied. These procedures, which are local in nature,
total number of points or elemenls in the mesh.

post-processing
do nol alter lhe

Diagonal swapping.- This changes the connectivities among nodes in the mesh
without altering their position. This process requires a loop over all the
element sides excluding those sides on the boundary. For each side AB (figure
3.9) common to the triangles ABC and ADB one considers the possibility of
swapping AB by CD, thus replacing the two triangles ABC and ADB by the
triangles ADC and BCD. The swapping is performed if a prescribed regularity
criterion is satisfied better by the new configuration than by the exisling one.
In our implementation, the swapping operation ts performed if the minimum
angle occuring in the new configuration is larger than in the original one.

Mesh smoothing.- This alters the positions of the interior nodes without
changing the topology of Ihe mesh. The element sides are considered as springs
of stiffness proportional to the length of the side. The nodes are moved until
the spring system is in equilibrium. The equilibrium positions are found by
iteration. Each iteration amounts to performing a loop over the interior
points and moving their coordinates to coincide with those of the centroid of
the neighbouring points. Usually three to five ileralions are performed.

The combined application of these two post-processing algorithms is found to be very
effective in improving the smoothness and regularity of the generated meshes.

3.6 Surface Discretisation.

The method followed for the triangulation of lhe surface componenls is an extension
of the mesh generation procedure for planar domains described above. The
discretisalion of each surface component is accomplished by generating a two
dimensional mesh of triangles in the parametric plane (ul,u 2) and then using the
mapping r_(ul,u 2) defined in section 2.2. This mapping eslablishes a one to one
correspondence between the boundary surface component and a region on the
parametric plane (ul,u 2) (figure 3.10). Thus, a consistent triangular mesh in the
parametric plane will be transformed, by the mapping [(ul,u2), into a valid
lriangulalion of the surface component. The construction of the lriangular mesh in
the parameter plane (ul,u 2) using the two dimensional mesh generator, requires lhe
determination of an appropriate spatial distribution of the two dimensional mesh
parameters. These consist of a set of two mutually orthogonal directions _.i'; i=1, 2,
and two associated element sizes 5i*; i=1, 2.

The two dimensional mesh parameters in the (ul,u 2) plane can be evaluated from the
spatial distribution of the three dimensional mesh parameters and the distortion and
stretching introduced by the mapping. To illustrate this process, consider a poinl P"
in the paramelric plane of coordinates (utP,u2P) where the values of the mesh
parameters 8_*, _u*; i=1,2 are to be computed. Ils image on the surface will be the
point P--r(u_P,u2P). The transformation between the physical space and the
normalised space at this point Tp can be obtained by direct interpolalion from the
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background mesh. A new mapping, valid in the neighbourhood of point P, can now be
defined between the parametric plane (u1,u2) and the normalised space as

Fl(ul,u 2) = Tp [(u 1,u 2) (3.3)

A curve in the parametric plane passing through point p_* and with unit tangent
vector D.= ([}_,1_2) at this point, is transformed by the above mapping into a curve in
the normalised space passing through the point Tp P. The arc lenglh parameters ds

and d_', along the original and transformed curves respectively, are related by lhe
expression [35]

i;j=l aul °_ulI_ 13j (ds)2
(3 4)

Assuming that this relation between the arc length parameters also holds for the
spacings, we can compule the spacing 8p along the direction D. in the parameter plane
as

i;j=t _ui °_ui j31J3J (3.5)

The two dimensional mesh parameters _.i*, 5i';i=l, 2 are determined from lhe

directions in which _ attains an extremum. This reduces to finding the eigenvalues
and eigenveclors of a symmetric 2 x 2 matrix.

To form the initial front, the (u_,u 2) coordinates of the nodes already generated on
the boundary curve components have to be computed. As the mapping r(u_,u2) cannot
be inverted analytically, the coordinates (u_,u 2) of such points are found
numerically by using a direct iteration procedure [31}.

3.7 Generation of Tetrahedra.

the starting point for Ihe discrelisation of the lhree dimensional domain into
tetrahedra is the formalion of an initial generation fronl. The initial fronl is the set
of oriented triangles which constilules the discretised boundary of the domain and is
formed by assembling the discrelised boundary surface components. The order in
which the nodes of these triangles are given defines the orientation, which is the
same as thai of lhe corresponding boundary surface component The algorithm for
generating tetrahedra is analogous to that described above for the generalion of
Iriangles (see figure 3.8). However, in the three dimensional case the range of
possible options al each slage is much wider and the number of geometrical
operations involved increases considerably. Thus, the ability of the method to
produce a mesh and the efficiency of its implemenlation relies heavily upon the type
of strategy selected. The generation of a generic lelrahedral element involves the
following sleps (figure 3.11):
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Figure 3.11 Generalion of a tetrahedral element.
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i) Select a triangular face ABC from the front to be a base for the tetrahedron to
be generated. In principle, any face could be chosen, but we have found it to be
advantageous in practice to consider the smallest faces first. For Ihis purpose,
the size of the face is defined in terms of lhe size of its shortest height.

ii) Interpolate from the background grid the transformation T at the centroid of
the face M and apply it to the nodes in the front which are relevant to the

triangulation. In our implementation, we define the relevant points to be those
which lie inside the sphere of centre M with radius equal to three times the value

of the maximum dimension of the face being considered. Let F,, _.., _ and _ denote

the positions in the normalised space of the points A, B, C and M respectively.

iii) Determine, in the transformed space, the ideal position _1 for the vertex of

the letrahedral element. The point 151lies on the line which passes through the

point tvl and which is perpendicular to the face. The direction in which 41 Is

generated is determined by the orientation of the face. The location of 41 is

computed so thal the average length of the three newly created sides which join

point 151 with points ,_, __and _ is unity. For faces whose size In the parametric
plane is very different from unity, this step may have to be modified, as in
expression (3.2), to ensure geometrical compatibility. However, such cases

rarely occur in practice. Let 51 be the maximum of the distances between point _1

and points ,_, _ and ._.

iv) Select other possible candidates for the vertex and order them in a list. Two

types of points are considered viz. (a) all the nodes -_I, (_2 .... in the current
generation front which are, in the normalised space, interior Io a sphere with

centre I_1and radius r = 81, and (b) a new set of points 151..... _ generated along

the height P1M. Consider the set of points A, B and _ and denote by __ the member

of this set which is furthest away from t_l. For each point.Qi, construct the sphere

with centre Q_ion the line defined by poinls 151and 1_Iand which passes through

point (3, and D. The position of the centres _i of these spheres on the line _1_

defines an ordering of the the ._i points with the furthest point from 151appearing

at the head of list. The points ._.1..... P-s are added at the end of this list.

v) Selecl the best connecting point. This is the first point in the ordered list
which gives a consistent tetrahedron. Consislency is guaranteed by ensuring that
none of the newly created sides intersects with any of the existing faces in lhe
front, and that none of the existing sides in the front inlersect with any of the
newly crealed faces.

vi) If a new node is created, its coordinates in the physical space are obtained by
using the inverse transformation T -1.

vii) Store the new triangle and update the front by adding/removing the
necessary sides.
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3.8 Mesh quafify assessment.

Any discussion of mesh quality should be intimately related to the form of the
solution we are trying to represent on that mesh. Two factors need to be considered
here:

i) Determination of the characlerislics of the optimal mesh for lhe problem at
hand. This inlroduces lhe concept of adaptivity and Ihis aspecl is considered in
section 5.

ii) Assessment on how well the generated mesh meets the requirements specified
by the mesh parameters. This assessment can be made by examining the generaled
mesh and determining the statistical dislribution of certain indicators. For
example in figure 3.12 we have chosen as indicators the number of elements

around a side, the magnilude of the element dihedral angles and the length of the
side. These indicators are compared with optimal values i.e. those of a regular
lelrahedron which has the exact dimensions specified by the mesh parameters.

3.9 Applicalion examples

A lwo dimensional discretisation of the domain around a four componenl airfoil in
landing configuralion is shown in figure 3.13. The background mesh employed for lhe
gpl_eralion, consisting of a few elements only, has been superposed on the generated
mesh. The mesh in lhe vicinity of lhe airfoils is nearly of constant size and varies
rapidly away from the airfoils. Very little distortion in the triangles is observed
even Ihough large varialions in mesh size occur.

G_'n e[[o_.fJgJatP,_rconfiguratLg_n

Ir_ computational aerodynamics, a problem of currenl inleresl is lhe prediction of the
inviscid flowfield about complete aircrafl configurations. The problem considered
here is the simulation of Ihe flow pasl a generic fighler with canard, 70-20 cranked
della wing, vertical fin and engine inlet. This same configuration has been studied
previously using an algebraic grid generation approach [36]. Due to the symmetry
of the problem only half of the fighter is modelled. Figure 3.14(a) shows the
geometry definition of lhe computational domain. The background mesh employed is
illustraled in figure 3.14(b). The curve components, defined in terms of cubic
splines and the discrelisalion of these componenls Is displayed in figure 3.14(c). The
individual surface componenls are described by tensor product surfaces and Ihe
surface# di.qcrelisation is illustrated in figure 3.14(d). An intermediate stage during
lhp letrah_qdra generation process is displayed in figure 3.14(e). The final mesh
(:on_islr_d of 76,522 lelrah_;dfa and included a full simulation of the engine inl_;t.

SpacQ sbutlb, cq_n_i4lur_atk_

rtm cl_-_omc,lry considered is lhat of HERMES like space shuffle. In figure 3.15(a) the
r,tjrfac_, definilion for half of lho model which contained 13 surface componenls and
29 curve componenls is shown. Two views of the triangulated surface are displayed
in figurp 3.15(h). The Iriangulation consi.,;ted of 5,776 etemenls of nearly constant
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(a)

(b)

Figure 3.15 Space shuttle configuration
(a) surface definition

(b) surface triangulation.



size. The three dimensional domain was filled in with 87,896 letrahedra of

increasing size away from the body.

Boeing 747 irl landing configuration

The problem considered in this section is the subsonic flow over a Boeing 747
aircraft. The leading edge slats and trailing flaps in the wing are deployed in a landing
configuration. The flaps are detached from the wing. This means that lhe generator is
required to mesh the region between wing and flaps. For this reason the generation of
structured grids for this type of configuration presents severe problems. The
geometrical definition of the aircraft by means of tensor product surfaces is shown
in figure 3.16(a). Due to the symmetry of the geometry only half aeroplane is
considered in the computational domain. The boundary definition consists of 29
surface components and 57 curve components. The outer boundary is a circular
cylinder of radius equal to 30 times the mean chord of the wing. The discretisation of
the surface has 13,030 triangles and the computational domain has been discrelised
using 194,307 telrahedra. An attempt has been made to generate a mesh which has
nearly uniform element size in the vicinity of lhe aeroplane and increases rapidly
away from it. An inviscid flow computation was performed for a free stream Math
number of 0.3 and an angle of attack of 5°. Figure 3.16(b) shows two views of the
mesh and the computed pressure contours on the surface of the complete aircraft. The
computed solutio,i was obtained after 700 timesteps of lhe explicit algorithm
described in section 1.3. This results were not fully converged and are only

preliminary.

F-I___ fighter configuration

Here the flow past an F-18 fighter aircraft, including the modelling of the engine
effects is considered. The free stream Mach for the computalion is 0.9 and the angle
of attack is 3o . The simulation of the effects is accomplished by specifying the Mach
number al the engine inlel to be 0.4. The flow condilions at the outlet are those
corresponding 1o a jet pressure ratio of 3 in lhe engine. Due to the symmetry of the
geometry only half of the domain is considered. The geometry of the boundary of the
cornputalional domain is defined by means of 37 surface components and 87 curve
components. The spline definition of the aircraft surface and the engine ducts is
represented in figure 3.17(a). The outer boundary is a rectangular box which is
silualed at an approximate dislance of 15 wing chords from the aircraft. The initial
generation contains 30,743 triangular faces. The triangulation of the surface of the
full F 18 is depicted in figures 3.17(b), in which the engine ducts are shown
detached, and 3.17(c). The element size is almost uniform in the neighbourhood of
1he aircraft and increases away from it. The generated mesh for half of the domain
consisls of 451,641 telrahedral elements and 84,827 points. The solution on this
mesh was computed using 3,500 explicit timesteps. It required a total CPU lime of 6
hours on a single processor of a Cray 2. The pressure solution on the surface of the
aircralt is shown in figure 3.17(d). Some of the features expecled in such a flow
such as, for instance, the canopy and wing shocks can be apprecialed.

Fa]Cgn aeroDlane

In this section we consider the flow past a two engine Falcon aeroplane. The geometry
definilion which required 24 surface components and 52 curve components, is
displayed in figure 3.18(a). The pylons and nacelles are included in the model and
flow through the interior of lhe nacelles has been allowed in the numerical
simulation. No engine elfects are considered. In this example an attempl has been
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(a)

(b)

Figure 3.16 Boeing 747 in landing configuration (M.=0.3, or.=5o)

(a) Geometry definition - aircraft surface patches
(b) Two views of the mesh and pressure contours on the surface.
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(b)

_ ENGINE DUCTS

Figure
3.17 Flow pas! an F-18 fighter configuration (M_=0.9, o_=3 o)

(a) Geometry definition - aircraft surface patches

(b) Surface triangulation showing engine ducls
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(c)

(d)

Figure 3.17 Flow past an F-18 fighler configuration (M_=0.9, o_=3 °) (conlinuation)

(c) Triangulation of the F-18 surface

(d) Computed pressure solution
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(a)

Figure 3.18 Two engine falcon aircrafl (M.=0.85, o_=2°)

(a) Geometry definition.
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(b)

Figure 3.1B Two engine falcon aircraft (M_=0.85, c(=2 °) (continuation)

(b) Triangulation of the aeroplane surface and plane of symmetry

(c) Surface triangolation for the complete aeroplane



(d)

(e)

Figure 3.18 Two engine falcon aircraft (M.=0.85, o.=20 ) (continuation)

(d) Computed velocity vectors oil the surface

(e) Computed surface pressure contours



made to produce a mesh which has increased resolution in those regions where high
gradients in the solution can be expected e.g. leading/trailing edges, nose el¢. This can
be appreciated in figure 3.18(b) which shows the generated triangulation on the
surface of the aeroplane and on the plane of symmetry. A view of the sur|ace mesh,
which contains 30,628 triangles for the complete aeroplane, is displayed in figure
3.18(c). The volume surrounding the aeroplane was discretised using 720,859
letrahedra and 133,080 points. The generation of the mesh was performed on a Cray
YMP machine and required approximately two hours of CPU time using a single
processor. A flow simulation of steady state flight al a free stream Mach number of
0.85 and an angle of attack of 2o was performed. The flow simulalion needed about 8
and a half hours of CPU lime on a Cray 2 machine. The velocity vectors on the surface
of the complete aeroplane are displayed in figure 3.18(d). The pressure contours on
the surface of the aircraft are depicted in figure 3.18(e). The solution is rather
oscillatory. This may indicate that the solution is not fully converged yet. The
formation of a lambda shock pattern on the wing and the shock structure on the
pylons and nacelles can be observed.
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4. DATA STRUCTURES

this sectionhasbeenwritten in collaborationwith

J. Bonet
Institutefor NumericalMethodsin Engineering

UniversityCollegeSwansea
SWANSEASA28PP,UK

From the previoussection it is apparentthai a successfulimplementationof the
presentedalgorithmwill require the use of data structureswhich enable certain
sorting and searching operationsto be performed efficiently. For instance, the
generation front will require a data structure which allows for the efficient
insertion/deletionof sides/facesandwhich also allows for the efficient identification
of the sides/faceswhichintersectwith a prescribedregionin space.

The problemof determiningthe membersof a set of n points which lie inside a
prescribedsubregionof an N dimensionalspace is knownas geometric searching.
Several algorithms have been proposed [37-40] which solve the above or equivalent
problems with a computational expense proportional to log(n). The problem
complexity increases considerably when, instead of considering points, one deals
with finite size objects such line segments, triangles or tetrahedra. A common
problem encountered here, namely geometric intersection, consists of finding the
objects which overlap a certain subregion of the space being considered. Algorithms
for solving this problem in two dimensions exist [41] and have been applied in
determining the intersection between geometrical objects in the plane. To our
knowledge, the only algorithm capable of solving this problem in three dimensions is
based on the use of the alternate digital tree [42]. The particular application which
motivated the development of this data structure was the implementation of the mesh
generation algorithm described in the previous section.

In what follows, we shall describe an algorithm and associated data structure, called
the alternating digilal tree (ADT), which allows for the efficient solulion of the
geometric searching problem. It naturally offers the possibility of inserting and
removing points and optimally searching for the points contained inside a given
region. It is applicable to any number of dimensions, and is a natural extension of the
so called digital tree search technique which is exhaustively in [43] for one
dimensional problems. A procedure which allows treatment of any geometrical object
in an N dimensional space as a point in a 2N dimensional space will be introduced;
thereby allowing the proposed technique to be employed for the solution of geometric
intersection problems.

4.1 Binary tree structures

Binary trees provide the basis for several searching algorithms, including the one to
be presented here. It is therefore necessary to introduce some basic concepts and
terminology related to binary tree structures. More detailed expositions can be found
in 141,44].
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Figure 4.1 A simple binary tree and its storage in computer memory.
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Figure 4.2 Deletion process.



Definition and Terminology

Tree struclures provide a systematic way of storing a colle;tion of dala items which
enables not only a quick access to the information stored, but also frequen| insertions
and delelions of items. This degree of flexibility requires the storage of data ilems in
non-sequential locations of the computer memory. As figure 4.1a illustrates, to
achieve this, each data item is extended by the addilion of two integer valLles, known
as lhe left and right links, and stored in what is known as a node of the Iree. Each

added link can either be equal to zero or equal to the position in memory where
another node of lhe tree can be found. Hence, from one node of the tree it is possible
to reach at mosl lwo other nodes. Moreover, in order to ensure that every node can be
reached, these links must be such that for each node except one, known as the root,
there is one and only one link pointing at it. This definition establishes a hierarchy of
nodes: the root at the lop level of the hierarchy points at 0, 1 or 2 nodes at the next
level; each of these in turn points at other 0, 1 or 2 nodes at lhe next level of lhe
hierarchy; and so forth. This hierarchical slructure inspires the graphical
representation shown in figure 4.1b for a simple tree comprising only eight nodes
{A, B, C, D, E, F, G, H}.

Genealogical terms are normally used to describe the relalive position of nodes in a
tree: when a node points at a second node, the former is called the father of the latter,
and this the son of the former node. A node wilhout sons, that is, with both links
blank, is called a terminal node, and the only node without a father is the root (node A
in figure 4.1b). Given a node, the set of nodes formed by itself together with all ils
descendants constitutes a subtree of the main tree. For instance, in figure 4.1b the
trees {C, D, E, F, G, H} and {E, G, H} are subtrees of the main tree rooted at C and E
respeclively.

To retrieve informalion stored in a given node requires knowledge of its location in
memory, which is kept by its father. Hence, a node in lhe Iree can only be examined
or visited if all its ancestors are visited first. However, il is possible to
systematically examine each node in such a way that every node is visited exactly
once. Such an operation is known as traversing the free and provides the basis for lhe
searching melhods discussed below. Although several algorithms can be found in the
literalure to traverse a binary tree [44], altention will be centred here on the so-
called preorder traversal melhod. This technique is embodied in the following three
steps:

1. Visit the root of the current sublree
2. If the left link of the root is nol zero then traverse the left subtree.
3. If the right link o/ the root is not zero then traverse the right subtree.

The procedure determined by these lhree steps is clearly recursive, that is, steps 2
and 3 invoke again the algorithm which they define. In order 1o illustrate lhis
process, consider again the tree shown in figure 4.1b; for this tree, the repeated
applicalion of the above algorilhm yields the following sequence:

1. Traverse the tree {A, B, C, D, E, F, G, H}
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1.2. Traverse the tree {B}
1.2.1.
1.2.2. Skip
1.2.3. Skip

1.3. Traverse the tree {C, D, E, F, G, H}
1.3.1.

1.3.2. Traverse the tree {D, F}
1.3.2.1.

1.3.2.2. Traverse the tree {F}
1.3.2.2.1
1.3.2.2.2 Skip
1.3.2.2.3 Skip

1.3.2.3 Skip
1.3.3. Traverse the tree {E, G, H}

1.3.3.1. Vis/t E

1.3.3.2. Traverse the tree {G}
1.3.3.2.1

1.3.3.2.2 Skip
1.3.3.2.3 Skip

1.3.3.3. Traverse the tree {H}
1.3.3.3.1 ..V_L,S..t_,._H_

1.3.3.3.2 Skip
1.3.3.3.3 Skip

Thus, the nodes of lhe tree in figure 4.1b in preorder are A, B, C, D, F, E, G and H.

We notice in the above algorithm that, before moving on to traverse the left sublree
- step 2 in the previous algorithm it is necessary to store lhe value of lhe right
link, that is, Ihe address of the right son, in order to enable the subsequent Iraversal
of the right sublree. Moreover, whilst traversing the left sublree it is likely thal
additional right links will have to be stored. In fact, a lisl containing the addresses of
all right sublrees encountered along the way which are yet Io be traversed, must be

kept and has to be continuously updated as follows. After visiting each node, the righl
link, if different from zero, is added to the lisl and if Ihe left link is not zero the left

subtree is traversed. When a zero left link is encountered, the last right link
inserted in the list is retrieved, as well as removed, from the list and the sublree
rooted at this address is traversed.

This type of list, in which items are inserted one by one and extracted, also one at a
lime, in the reverse order, is known as a stack [44]. A stack consists of a linear
array, or vector, logelher with an integer variable to record the number of ilems in
the array. This variable, being initially zero, is increased by one every lime an item
is added to the stack and decreased by one when an item is extracted from it.

Wilh lhe help of a stack, any recursive algorithm can be implemenled wilhoul the
need Io use recursive routines. For inslance, a non-recursive implemenlalion of the
lraversal algorilhm given above can be symbolically expressed as:

O.a Set _oot address = address of the root node
O.bSetsrack size = 0

1. Visit t[_e node stored at root address
2. //riqht ]_nk = o then:
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Setstack size = stack size +i

Setstack(stack size) = right_llnk
endif

3a. If left ].ink _ 0 then:

S_root address = left link

go toI
endif

3b. If]eft ]:ink = 0 then:

If stack size :_ 0 then:

Set root address = stack(stack size)

Set stack size = stack size - 1

go to 1
endif

endif

If stack size = 0 -4, terminate the process

[n$oding aO__[_DoJefing_n._

In order to add a new dala ilem to a bi'lary tree, a node containing the new item of

information musl be crealed and stored ,n a convenienl memory location. The left and

right links of this node are set Io zero. If the current tree is emply, Ihe new node
becomes lhe root of lhe tree, otherwise lhe node must be inserted or linked to the

exislin,:] bee. To achieve lhis, the Iree is followed downwards, slarling from the root

and jumping from falher to son, unlil a blank link is found. This link is then set to

the memory posilion of the new node. When moving down the tree, a crilerion must

be. provided at each node lo chose between the left or righl branches. This crilerion

delerminr<n the final position in lhe tree of lhe new node and, consequenlly, the shape
of the tree itself.

Delelinq a node from a binary tree is a straighlforward operation if the undesired

node is a h-.,rminal node; changing to zero Ihe corresponding link of ils father

elfeclively 'prunrm* the node from the tree and renders lhe memory occupied by il

av;_ib#-)Io fo[ fiJtHre uses. In the case of an intermediate node, the process becomes
*;lightly morn complicated since a gap can not be lefl in Ihe free. To overcome this

pr,_bh_m. 1t_e unwanlr, d node is replaced by a terminal node chosen from among its

d_,';c_n_];mts. This operation can be carried out by modifying the links to suit the new

*;Ir_Jch,e of the tree and without moving lhe nodes from Iheir memory positions.

l-iglJrrm 4.2a and 4.2b illustrate the deletion of node C from lhe tree shown in figures

4.1a anti 4.tb and its replacemenl by node H.

If tim application al hand demands frequent deletion and insertion, a memory book

ke_pinfl syslem is necessary for the efficient implementation el Iree slructures. This

is rr_q_med so lhal new nodes can be placed in the memory space released by Ihe

delelion of previous nodes. This problem can be solved by using a linked lisl

shuChlrf; Io record all the available memory spaces. A linked lisl is a data struclure

lhal diff_,rs from lhe binary free dala slruclure described above in that every node

h;_.'; alw_ys only one link pointing at another node, and every node has always one link

p.oinlmg _tl it. l-here are lwo exceptions, which are the head and lhe end nodes. The

tm;_d i..; a node wilh no link pointing at it - the address of which is kepl separately -
a,d Ihe r, nd is a node wilh a blank link.

As .<hewn in figure 4.3 lhe two data slructures, binary tree and linked lisl, are

_pd_tnd sim_dtaneously. Initially, the available memory is partitioned into cells of
th_ corTor',f si;,._; 1o slore tree nodes. These cells, which contain no relevant
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information olher than a single link, are then joined logether to form a linked list.
Every time a node needs to be inserted into the tree, the memory space required by
this new Iree node is generated by removing a node from the lisl (see figure 4.3b).
Similarly, when a node is deleted from the tree it is added to the lisl (see figure
4.3c). Inserting and deleting nodes in the list always takes place at the head. To
insert a node into the lisl, the link of the new node is set equal to the address of the
head and lhe inserted node becomes the new head of the list. The deletion of the head
node can be done by simply allowing its link to be the new head.

4.2 The Alternating Digital Tree

Consider a set of n poinls in a N dimensional space (R N ) and assume for simplicity
lhal the coordinate values of their position vectors {xl, Z_2... _}, after adequate
scaling, vary within the interval [0,1). The aim of geometric searching algorithms
is to select from lhis set those points that lie inside a given subregion of the space. To
facilitate their representation, only rectangular - or 'hyper-reclangular' - regions
will be considered, thereby allowing their definilion in terms of the scaled
coordinates of the lower and upper vertices as (a, b.).

Comparing the coordinates of each point k wilh the vertex coordinates of a given
subregion to check whether the condition a_ <_Xk_-<b_is salisfied for i = 1, 2 ... N,

would render the cost of the searching operation proportional to the number of points
n. This computational expense, however, can be substantially reduced by storing the
points in a binary tree, in such a way that the structure of the tree reflects the
positions of the points in space. There exist several well known algorithms that will
accomplish this effect for one dimensional problems; the most popular are the
binary search Iree and digital tree methods [41,43]. Binary search trees have been
extended to N dimensional problems in [45], but the resulting tree structure, known
ad N-d trees, do not allow the efficient deletion of nodes. The algorithm presented
here is a natural extension of the one dimensional digital tree algorithm and
overcomes the difficulties encountered in N-d trees.

Definilion and node insertion

Broadly speaking, an alternaling digital tree can be defined as a binary tree in which
a set of n points are stored following certain geometrical criteria. These criteria are
based on the similarilies arising between the hierarchical and parental structure of
a binary tree and a recursive bisection process: each node in the tree has two sons,
likewise a bisection process divides a given region into two smaller subregions.
Consequently, it is possible to establish an association between tree nodes and
subregions of the unit hypercube as follows: the root represents the unit hypercube
ilself; this region is now bisected across the x1 axis and the region for which 0 _<x 1 <
0.5 is assigned to the left son and the region for which 0.5 _<x1 < 1 is assigned to Ihe
right son; at each of these nodes lhe process is repeated across the x2 direction as
shown in figure 4.4. In a two dimensional space this process can be repeated
indefinilely by chosing x 1 and x2 direclions in alternating order; similarly, in a
general N dimensional space, lhe process can be continued by choosing directions x 1,
x 2.... xN in cyclic order.

Generally, if a node k al the hierarchy level m - the root being level 0 - represents
a region (ck, _d_k),Ihe subregions associaled to its left and right sons, (.C_ki,dki) and

((;k,, dk,) resull from lhe biseclion of (£_, 0..k) by a plane normal to the j-th
coordinate axis, where j is chosen cyclically from the N space direclions as:
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j = 1 + mod(m,N) (4.1)

and mod(m,N) denotes the remainder of the quotient of m over N. Hence (£,k_,_J.k_)and

(_k,, _,) are obtained as:

1
Ckli = Cki, dkli = dk i for i _ j and Ckjl= Okj, dklj = _- (Oki + dk j) (4.2a)

• 1
Ckr' = Cki, dkri = dk i for i _ j and Ckti= _- (Ckj + dki), dkl j = dk i (4.2b)

This correlation between nodes and subdivisions of the unit hypercube allows an ADT
to be further defined by imposing that each point in the tree should lie inside the
region corresponding to the node where it is stored. Consequently, if node k of an ADT
structure contains a point with coordinates 2, the following condilion must be
satisfied:

Cki < Xki < dk i for i = 1,2 ... N (4.3)

Due to this additional requirement lhere exists only one possible way in which a new
point can be inserted in the tree. As discussed in the previous section the tree is
followed downwards until an unfilled position where the node can be placed is found.
During this process, however, left or right branches are now chosen according to
whether the new point lies inside the region related to the left or right sons, thereby
ensuring that condition (4.3) is satisfied.

Given a predetermined set of n points, an ADT structure can be built by placing
anyone point at the root and then inserting the remaining points in consecutive order
according to the algorithm described above. This is illustrated in figure 4.5 for a set
of 5 points {A,B,C,D,E}. The shape of the tree obtained in this way depends mainly on
the spatial distribution of the points and somewhat on the order in which the points
were inserted. The cost of operations like node insertion/deletion and geometric
searching depends strongly on the shape of the tree; generally poor performances are
to be expected from highly degenerated trees (see figure 4.6), whereas well balanced
trees (see figure 4.7), as those obtained for fairly uniform distributions of points,
will result in substanlial reductions of the searching cost. In these cases the average
number of levels in the tree, and therefore the average cost of inserting a new point,

becomes proportional to log(n); clearly a considerable cost if compared with the cosl
of storing the points in a sequential list, but fully juslifiable in view of the reduction
in searching costs thal ADT structures will provide.

Consider now a set of poinls stored in an ADT structure. The fact that condition (4.3)
is satisfied by every point provides the key to the efficient solulion of a geomelric
searching problem. To illustrate this, note first that the recursive structure of the
bisection process described above implies that the region related lo a given node k
contains all Ihe subregions related to nodes descending from k; consequently, all
points stored in these nodes must also lie inside the region represented by node k. For
instance, all points in the ADT structure are stored in nodes descended from the root
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Figure 4.6 Degenerated trees.

Figure 4.7 Well balanced tree.
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and, clearly, all of them lie inside the unit hypercube - the region associated with
the root. Analogously, the complete set of points stored in any subtree is inside the
region represented by the root of the sublree.

This feature can be effectively used to reduce the cosl of a geomelric searching
process by checking, at any node k, the intersection between the searching range (a,
b) and the region represented by node k, namely (_, _1_). If these two regions fall to
overlap, then the complete set of poinls stored in the subtree rooted at k can be
disregarded from the search, thus avoiding the need to examine the coordinates of
every single point.

Consequently, a systematic procedure to select the points that lie inside a given
searching range (a, b) can be derived from the traversal algorithm previously
presented. Now the generic operation 'visit the root' can be re-interpreted as
checking whether the point stored in the root falls inside the searching range.
Additionally, the left and right subtrees need to be traversed only if the regions
associated with their respective root nodes intersect with the range. Accordingly, a
geometric searching algorilhm emerges in a recursive form as:

1. Check whether the coordinates of the node stored in the root, say _k, are

inside (a, b) i.e. check whether ai <_Xki < bi for i = 1,2 ... N.

2. If the left rink of the root is not zero and the region (_, d.k_)overlaps with

(_t, b) i.e. if dk__ _> a iandck_ _ <_ b_for i = 1,2... N, search the left subtree.

. If the right link of the root is not zero and the region (£,.kr, t;]kr) overlaps

with(_,b) i.e. ifdk, i _> aiandck, i -< b i fort= 1,2 _. N, search the right
subtree.

In order to illustrate this process, consider the set of points and the searching range
shown in figure 8a and the corresponding alternating digital free depicted in figure
8b. For this simple example, the algorithm given above results in the following
sequence of steps:

Search the tree {A,B,C,D,E,F,G,H}:

1. Check if a_<_xA_<_b ifor i-- 1,2

2. Since dB__>a_and cej < bi search the tree {B,C,D,E}:

2.1. Check if a=< XB=<_bi

2.2. Since dc i _>aaand Cc_<_bi search the tree {C,E}:
2.2.1. Check if a i <_Xc__<b_

2.2.2. Skip (left link is zero)
2.2.3. Skip (CE1 > b 1)

2.3. Skip (CD2 > b2)
3. Skip (CF1 > b 1)

Again a 'non-recursive' implementation of this algorithm can be achieved using a
stack in a very similar way to that previously described for the lraversal algorithm.
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Note thal, with this technique, only the coordinates of points A,B and C ale actually
examined, the rest being immediately disregarded in view of their posilion in the
tree. In general, only those points stored in nodes with associated regions
overlapping (a. b) will be checked during the searching process.

4.3 Geometric Intersection

Geometrical intersection problems can be found in many applications; for instance, a
common problem that may emerge in contact algorithms [46], hidden line removal
applications or in the advancing front mesh generation algorithm presented In
seclion 3, is to determine from a set of three noded triangular elements those which
intersect with a given line segment. Similar problems, involving other geometrical
objects, are encountered in a wide range of geomelrical applications. In general, a
geometric intersection problem consists of finding from a set of geomelrical objects
those which intersect with a given object. If every one-to-one intersection is
investigated, the solution of these problems can become very expensive, especially
when complex objects such as curves or surfaces are involved. Fortunately, many of
these one-to-one intersections can be quickly discarded by means of a simple
comparison between the coordinate limits of every given pair of objects. For
instance, a triangle with x-coordinate varying from 0.5 and 0.7 cannot intersect
with a segment with x-coordinate ranging from 0.1 to 0.3. Generally, the
inlersection between two objects in the N dimensional Euclidean space, requires each
of the N pairs of coordinate ranges to overlap. Consider for instance the intersection

problem between triangular facets and a target straight line segment in R3; then, if

(_.,_n, __km_,) are the coordinate limits of element k and (._.m_n, Z_O.max)are the
lower and upper limits of the target segment (see figure 4.9), an important step
towards lhe solulion of a geometric intersection problem is to select those which
satisfy the inequality:

X < ik,mn - XO,max

X _ ik,max Xo,min

fort= 1,2 ... N (4.4)

The cost of checking condition (4.4) for every element grows proportionally to n,
and for very numerous sets may become prohibitive. This cost, however, can be
substantially reduced by using a simple device whereby the process of selecting those
elements which satisfy condition (4.4) can be interpreted as a geometric searching
problem. Additionally, since the number of elements that salisfy condition (4.4) will
normally be much smaller than n, the cost of determining which of these intersects
with the target segment becomes affordable.

In order 1o interpret condition (4.4) as a geometric searching problem, il is first
convenienl to assume that all the elements to be considered lie inside a unil
hypn.rcube a requirement that can be easily satisfied through adequate scaling of
Ihe coordinate values. Consequently, condition (4.4) can be re-written as:

0 --< Xk.min 1 -< XO,max 1

0 _< Xk,min N ---< Xo.max N
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XO,min 1 <_ Xk,max 1 _< 1

(4.5)

Xo,min N < Xk,max N _< 1

Consider now a given object k in R N with coordinate limils _.ml,, and _,m,,x;

combining this two sets of coordinate values, it is possible 1o view an object k In R N

as a point in RTM with coordinates ,_t for i = 1,2 ... 2N defined as (see figure 4.10):

1"

_,k = [ Xk,min 1 .... Xk,min N, Xk,max I .... Xk.max N]

Using this representation of a given object k, condition (4.5) becomes simply:

(4.6)

a_<_Xk__<b_ for i -- 1,2 ... 2N (4.7)

where a and b can be interpreted as the lower and upper vertices of a 'hyper-

rectangular' region in RTM and, recalling (4.5), their components can be obtained in
terms of the coordinate limits of the target object (see figure 4.11) as:

a -- [ 0 .... 0, Xo,max 1 .... X0,maxN] T

T

b- [ Xo,min 1 .... X0.minN, 1.... 1]

(4.8a)

(4 .Sb)

Consequently, the problem of finding which objects in R N satisfy condition (4.4)

becomes equivalent to a geometric searching problem in R TM i.e. obtaining the points
which lie inside the region limited by a and b. Once this subgroup of elements has

been selected, the intersection of each one of them with the target object must be
checked to complete the solution of the geometric intersection problem.

4.4. The use of the ADT for mesh generation

It is obvious from the advancing front algorithm described in section 3 that
operations such as searching for the points inside a certain region of the space and
determining intersections between geometrical objects - in this case stdes and faces

will be performed very frequently. The complexity of the problem is increased by
the facl that the set of faces forming Ihe generation front changes continuously as new
faces need lo be inserted and deleted during the process. Clearly, for meshes
consisting of a large number of elements the cost of performing this operations can
be very important.

A successful implementation of the above algorithms has been accomplished by
making extensive use of the ADT data structure. For instance, the algorithm of
section 3.5 for tetrahedra generation employs two tree structures; one for the faces
in the front and the other for the sides defined by the intersection between each pair
of faces in the front (see figure 3.11). This combination allows a high degree of
flexibility and the operations of insertion, deletion, geometric searching and
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geometric intersection can be performed optimally. The overall computational
pertormance of the algorithm is demonstrated by generating tetrahedral meshes,
using the above method, for a unit cube (see figure 4.12). Different numbers of
elements have been obtained by varying the mesh size. In figure 4.12 the computer
time required on a VAX 8700 machine has been plotted against the number NE of
elements generated. It can be observed that a typical NE*Iog(NE) behaviour is
attained. Using this approach meshes containing up to one million elements have been
generated and no degradation in the performance has been detected.



5. ADAPTIVITY FOR STEADY STATE PROBLEMS

The procedures described above allow for the computation of an initial approximalion
to the steady slate solution of a given problem. This approximation can generally be
improved by adapting the mesh in some manner. Here, we follow the approach of
using the computed solution to predict the desired characteristics (i. e. element size
and shape) for a new, adapted mesh. The ultimate aim of the adaptation procedure is
to predict the characteristics of the optimal mesh. This can be defined as the mesh in
which the number of degrees of freedom required to achieve a specified level of
accuracy is a minimum. Alternatively, it can be interpreted as the mesh in which a
given number of degrees of freedom are distributed in such a manner thal the highest
possible solution accuracy is achieved. In practical silualions however, there are
several factors which make the achievement of such optimal meshes extremely
difficult. Some of these factors are:

i) The concept of optimality is intimately linked to thai of accuracy, which is nol
uniquely defined. Hence optimality of a mesh needs to be defined with respect to a
given norm or measure of the error. An additional inconvenience related to lhe
measure of accuracy, in lhe present contexl, arises from the fact that we are
attempting to solve a coupled set of non linear partial differential equations and,
lherefore, a rigorous measure of the error should involve all lhe relevant
variables.

ii) For linear elliptic operators, as we have shown in Section 1, Galerkin finite
element algorithms are readily derived which guarantee that the approximation
obtained is the most accurate amongst all the possible approximations wilhin lhe
trial space of functions. Here, accuracy is defined with respecl to a norm implied
by the operalor itself (the energy norm). For the Euler equalions, however, such
an energy norm do_,s not exist and no numerical schemes are known which
possess lhis optimality property.

iii) This besl approximation property means thai the error of Ihe computed
solution, measured in the energy norm, is bounded above by thai of Ihe exact
interpolanl, i.e. lhe approximation in Ihe space of currenl trial functions which
has exact nodal values. Using results of interpolation theory [47], it is then
possible to produce riaorous bounds on 1he error of the numerical
approximalion. These results are based on cerlain regularily assumplions on the
solution, which for the Euler equalions will be invalid in the vicinity of
discontinuities in the. flow.

iv) Finally, the error eslimales produced are based on the compuled solution. As
this is only an approximale solution, such error eslimates will only be as good as
lhe computed .qolulion Tills means that, even in lhe besl situalion, the oplimal
mesh will only be achieved in lhe asymptotic limil, i.e. when Ihe solulion is so
good that lhe computed error becomes very reliable.

In view of these observalions and limitations, we have made an altempl to develop a
heurislic adaplive strategy. This slrategy uses error estimates which are based upon
concepts from inl_rpolation lheory. The possible presence of discontinuities in the
solution is laken into accounl and, in addition, the procedure provides information
about any directionality which may be presen! in the solution. The advanlages of
using directional error indicalors become apparent when we consider the nature of
the solutions to be computed involving flows with shocks, contact disconlinuilies etc.



Suchfeaturescan be mosteconomicallyrepresentedon mesheswhichare stretched
in appropriale directions. Allhough, Ihese error estimates have no associated
malhematical rigour, considerable success has been achieved with Iheir use in
praclical situations.

The computed error, estimated from the current solution, is transformed into a
spalial distribution of 'oplimal' mesh spacings which are inlerpolaled using the
currenl mesh. The currenl mesh is lhen modified with the objective of meeting Ihese
'optimal' distribulion of mesh characlerislics as closely as possible, Three
alternative procedures will be discussed here for performing the mesh adaption. The
resulting mesh is employed Io produce a new solution and this procedure can repeated
several times until the user is satisfied with the quality of lhe computed solution.

5.1 Error indicator in 1D.

The developmenl of a melhod for error indication is considerably simplified if we
reslricl consideration to problems involving a single scalar variable. For lhis
reason, when solving the Euler equations, a key variable ts identified and then the
mesh adaptation is based on an error analysis for thai variable alone. The choice of
lhe best variable to use as a key variable remains an open queslion, but lhe the Mach
number has been adopted for the computations reported in these noles.

Consider firsl lhe one dimensional situation in which the exact values of the key
variable (_ are approximated by a piecewise linear funclion (_. The error E is then
defined as

E = c_(xt) - ,_(x 1) (5.1)

We note here that if the exact solution is a linear function of x_ then the error will
vanish. This is because our approximation has been obtained using piecewise linear
finile element shape functions. Moreover, if the exact solution is not linear, but is
smoolh, then il can be represented, Io any order of precision, using polynomial shape
funclinns.

I-o a firsl order of approximation, lhe error E can be evaluated as the difference

between a quadratic finite element solution (3 and the linear computed solution. To
oblain a piecewise quadratic approximation one could obviously solve a new problem
using quadratic shape functions. This procedure however, although possible, is not
advisable as il would be even more costly lhan the original computation. An
alternalive approach for estimaling a quadralic approximation from the linear finite
element solulion is lherefore employed. Assuming thai the nodal values of lhe
quadratic and linear approximations coincide i.e. the nodal values of E are zero, a
q_Jadralic solulion can be constructed on each element, once the value of the second
derivalive is known. Thus the varialion of the error E within an element e can be

expressed as

1 d28
Ee = _)-((he - _,) dx12 ( 5.2 )

e

where t_ denotes a local element coordinate and he denotes the elemenl length. A
procedure for estimaling lhe second derivative of a piecewise linear function is
described below.
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The root mean square value Ee RMs of this error over the element can be computed as

E, rims = _ dr., 1 I d2e
he _" = -_/-1-,_0he2 Idx12 ( 5.3 )0 e

where I - I stands for absolute value.

We define the 'optimal' mesh, for a given degree of accuracy, as the mesh tn which
this root mean square error is equal over each element. In the presenl context, this
requirement may be regarded as being somewhat arbitrary. However, it has been
shown [48] that the requirement of equidistribution of Ihe error leads Io optlrnal
results when applied to certain elliptic problems. This requirement is therefore
wrilten as

I d2el
he2 idx121 =C (5.4)

where C denotes a positive constant.

Finally, the requirement of equation (5.4) suggests that lhe 'optimal' spacing 8 on
lhe new adapted mesh should be computed according 1o

I
Idx121 =C (5.5)

5.2 Recovery of the second derivatives.

The first derivative of Ihe computed solution on a mesh of linear elements will be
piecewise conslanl and discontinuous across elemenls. Therefore, straightforward
differenlialion of 6 leads Io a second derivalive which is zero inside each element and
is not defined at the nodes. However, by using a recovery process, based upon a
variational or weighted residual statement [12], it is possible Io compute nodal
values of the Second derivalives from element values of the first derivatives of 6.

To illustrate Ihis process, consider a one dimensional domain 0 < x 1 < L which has

been discrelised inlo (n-l) linear two noded finile elements. The piecewise linear
dislribulion of the computed solulion _ is expressed as

n

= _ Nj6j (5.6)
J=l

where Nj is lhe standard linear finile element shape funclion [12] associated to node
J. Similarly, a piecewise linear approximalion to the distribution of the second
derivalive, which we seek to determine, can be written as
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d2(3 ndx12 = _'. Nj (5.7)
J--'l

J

The nodal values of the second derivative may be computed from the approximate
variational requirement that

n

J=l
I 0NK( J'NjNK d(2)d_ = - dx _ °_,J)_TxldD

_'_ J L'_ J=l

c_ d_
(_xl NK)xl= 0 + (_xlNK)xl=L K= 1..... n (5.8)

The values of the derivatives at the two end points can be inserted, if known, or can
be taken Io be equal to the constant value of the derivative in the adjacent elements.
The resulting set of algebraic equations can be solved, in a few iterations, by using a
Jacobi procedure [16] or alternalively, the consistent mass matrix appearing on the
left hand side of equation (5.7) can be lumped, thus yielding a diagonal system of
equations. Numerical resulls obtained to date do not indicate any _ignificant
differences in the meshes produced by using these lwo approaches.

5.3 Extension to multidimensions

Following the process described above, nodal values of the second derivative can be
obtained from the approximale solution on lhe currenl mesh. The use of expression
(5.5) lhen yields direclly a nodal value of the 'optimal' spacing for the new mesh.

Expre._sion (5.5) can be direclly extended to the N dimensional case by writing the
quadratic form

(5.9)

where ,6 is an arbitrary unil vector, _13is the spacing along the direclion of ,6., and m_i
are the componenls of a NxN symmelric matrix of second derivatives

,a2(_
miJ = r)xir)xj (5.1 O)

Ttmne derivatives are computed, at each node of the current mesh, by using the N
dimensional equivalenl of Ihe procedure presented in the previous section. The
rn_.aning ol equalion (5.9) is graphically illustrated in figure 5.1 which shows how
lhe value of ihe spacing in the D-direclion can be obtained as the distance from the
origin to lhe point of intersection of the vector _. with the surface of an ellipsoid. The
directions and lenglhs of the axes of the ellipsoid are the principal directions and
eigenvatues of /he matrix m respeclively.
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Several alternative procedures exist for modifying an existing mesh in such a way
thal the requiremenl expressed by equation (5.8) is more closely satislied. Three
such methods will be described here. In the first procedure, called mesh enrichment,
the nodes of lhe current mesh are kept fixed bul some new nodes/elements are
crealed. In the second procedure, referred Io as mesh movement, the total number of
elements and nodes remains fixed but their position is altered. Finally, in the
adaptive remeshing algorithm, the mesh adaplion is accomplished by completely
regenerating a new mesh using the mesh generation algorithm presented in section 3.

5.4 Mesh enrichment

In order to adapt a mesh using mesh enrichment, a sweep over all the sides in lhe
mesh is made and the 'optimal' spacing in the direction of each side is computed
according to expression (5.9). For each side, the matrix m is taken to be the average
of ils value al the two nodes of the side. The enrichment procedure consists of
introducing an additional node for each side for which the calculated spacing Is less
than the lenglh of the side. For interior sides, this additional node is placed at the
midpoint of the side, whereas for boundary sides, il is necessary Io refer to the
boundary definition and to ensure thal the new node is placed on the true boundary.
When any side is subdivided in this manner, the elements associated with thai side
will also need to be subdivided in order to preserve the consistency of Ihe final mesh.
Figure 52 illustrates lhe three possible ways in which this element subdivision
might have to be performed in two dimensions. The number of sides to be refined
depends on the choice of the constant C in equation 5.9. To avoid excessive refinement
in the vicinity of discontinuities, a minimum lhreshold value for the computed
spacing can be used. When the mesh enrichment procedure has been completed, the
values of the unknowns at the new nodes are linearly interpolated from Ihe original
mesh and the solution algorithm is re-started. This procedure has been successfully
implemented in two and three dimensions and several impressive demonstrations of
lhe power ol this lechnique have been made. I8,19,49,50].

The application of the enrichment procedure in the solution of a two dimensional
example P, illuslraled in figure 5.3. The problem solved is a Mach 8.15 flow past a
doubl_ ellipse configuration at 300 angle of attack. The initial mesh and two
adaptively enriched meshes are shown together wilh the computed Mach number
solutions. The application of the enrichment algorithm in three dimensions is shown
in figure 5.4. The inviscid flow past a 30 °wedge is solved. The free slream Mach
number is 3. This is a two dimensional problem computed on a three dimensional
mesh. Two vi_.ws of the initial mesh and solution are shown. A single application of
lhe enrichment algorilhm produces lhe mesh and solution which are also displayed in
figure 5.4.

It can be observed, from the examples presented, how the quality of the solution is
significantly improved by lhe application of. the enrichment procedure. The main
drawback of the approach is lhat lhe number of elemenls increases considerably
following each application of Ihe procedure. This means 1hat, in lhe simulalion of
praclical three dimensional problems, only a small number of such adaptations can
be contemplaled.

5.5 Mesh movement

For the mesh movement alogrilhm, the element sides are considered as springs of
prescribed stiffness and the nodes are moved until lhe spring syslem is in
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Figure 5.2 Mesh enrichment: three possible cases of refinement for a triangle
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2 752 points
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Figure 5.3 Supersonic flow past a double ellipse configuralion. Sequence of
meshes and solulions oblained using adaptive enrichmenl,
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(a)

(b)
(e)

(c) (f)

I
i

Figure 5.4 Mach 3 inviscid flow pas! a 300 wedge in 3D: (a), (b) two views of
the initial mesh and (c) the compuited density contours; (d), (e) two
views of the enriched mesh and (f) the final density contours.
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equilibrium.Considertwo adjacentnodesJ andK as shownin figure5.5. TheforceIJK
exerledbyIhespringconneclingthesetwonodescanbe takento be

LtK = CJK ( [.J - [.K )

where CjK is lhe stiffness of lhe spring and [j
nodes J and K respectively. Assuming thai

and

(5.11)

5< are the posilion vectors of

h = Ir.J-_1 (5.12)

the adaptation requirement of equalion (5.9) will be salisfied if the spring
sliffnesses are defined as

CjK = h

N

m il njKinjK i

i;j= 1
(5.13)

Here I]_jK is the unit veclor in the direction of lhe side joining nodes J and K. For
equilibrium, the sum of spring forces at each node should be equal to zero. The
assembled system can be brought into equilibrium by simple iteration. In each
iteration, a loop is performed over all lhe interior nodes and new nodal coordinates
are calculated according Io the expression

.r.jNEW =

sj

_, CJK
K =1

SJ

K =1

(5.14)

where the summation extends over the number of nodes, Sj, which surround node J.

Sulficienl convergence is normally achieved after three Io five passes through this
procedure

This lechnique will nol necessarily produce meshes of belier quality, as badly formed
elemPnl_ can appear in regions (such as shocks) in which the spring coefficients CjK
vary rapidly over a short distance. To avoid this problem, lhe definition of lhe value
of CjK given in equalion is (5.13) can be replaced by an expression of the form

A CjK

(5.15)CJKMOD = 1+ B + CjK

This can be regarded as a blending function definition for the spring stiffnesses and il
has been conslrucled so as to ensure lhal, with a suitable choice for the constants A
and P,, excessively small or excessively large element sizes are avoided. This, in turn
means lhal meshes of acceptable quality will be produced. More sophisticated
procedures for conlrolling the quality of the mesh during movemenl can also be
devised [51] and mesh movement algorithms have been successfully used in two and
Ihree dimensional flow simulations on both structured and unstructured meshes
[15,51,52]
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Themeshmovementalgorilhmdescribedhasbeenapplied!o lhe problem of flow pasl
a double ellipse configuration which has been treated previously. Figure 5.6 shows
the solutions produced following two mesh adaptations. It can be seen thal the
improvement obtained after the second adaptation is minor. This Is because the
algorithm does not allow for the crealion of new nodes and so the qualily of the final
solution is very much dependenl on the topology of the initial mesh. This ts a major
drawback of the mesh movement strategy. A possible remedy to this problem Is to
combine mesh enrichment and mesh movemenl procedures. This is demonstrated in
figure 5.7 which shows the application of the movement procedure to the final
enriched mesh of figure 5.3.

5.6 Adaptive remeshing

The basic idea of the adaplive remeshing technique is to use the computed solution Io
provide informalion on the spatial distribution of the mesh parameters. This
information will be used by the mesh generalor described in section 3 to generate a
completely new adapted mesh for the problem under investigation.

The 'optimal' values for Ihe mesh paramelers are calculated at each node of the
current mesh. The directions (z_;i=1 ..... N. are laken to be lhe principal directions of
the matrix m. The corresponding mesh spacings are computed from the eigenvalues
e_; i=1 ..... N, as

= for i=1 ..... N (5.1 6)

The spatial distribution of the mesh parameters is defined when a value is specified
for the constant C. The lotal number of elemenls in the adapled mesh will depend upon
the choice of this conslanl. For smooth regions of the flow, Ihis conslant will
determine the value of the rool mean square error in the key variable thal we are
willing Io accept. Therefore lhis constant should be decreased each time a new mesh
adaption is performed. On the other hand, solutions of lhe Euler equations are known
to exhibit disconlinuilies. At such discontinuities, the rool mean square error will
always remain large and therefore a different strategy is needed in Ihe vicinity of
such fealures.

In the practical implementation of the presenl melhod, two threshold values for lhe
computed spatial dislribulion of spacing are used: a minimum spacing _min and a
maximum spacing (_r,,x, SO lhal

,5,,,n < (_t-< (%max for i:1 ..... N (5.17)

The reason for defining lhe maximum value (_max is to account for the possibilily of a
vanishing eigenvalue in (5.16) which would render lhat expression meaningless.
The value of (_r_a,is chosen as lhe spacing which will be used in the regions where Ihe
flow is uniform (the far field, for instance). On the olher hand, maximum values of
the second derivatives occur near the discontinuities (if any) of the flow where lhe

error indicalor will demand thal smaller elements are required. By imposing a
minimum value ,5,,in for the mesh size, we allempt to avoid an excessive

concentration of elemenls near discontinuities. As the flow algorithm is known !o
spread disconlinuities over a fixed number of elements (i.e. two or three), at, In is
therefore set to a value lhat is considered appropriate to ensure that discontinuities
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Figure 5.5 Mesh movement algorithm. Element sides are replaced by springs.
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1 713 elements
913 points

MACH NUMBER SOLUTIONS M_ = 8.15 (_ = 300

Figure 5,6 Supersonic flow past a double ellipse configuration. Sequence of
meshes and solulions obtained using adaptive movement.
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10 649 elements
5 444 points

MACH NUMBER SOLUTION

M. = 8.15 (X = 300

Figure 5.7 Supersonic flow past a double ellipse configuration. Mesh and
solulion obtained after applying the adaptive movement procedure to
a previously enriched mesh.
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are representedto a required accuracy. This treatment also accounts for the presence
of shocks of different strength in which, since the numerical values of the second

derivative are different, equation (5.16) will assign them different mesh spacings
(e.g. larger spacings in the vicinity of weaker shocks).

The total number of elemenls generated in the new mesh will now depend on the
values selected for C, 8max, and 8rain. However, it turns out that this number is

mainly determined by the choice of the constant C, which is somehow arbitrary. The
criterion employed here is to select a value that produces a computalionally
affordable number of elements.

The adaptive remeshing strategy presented in this section is illuslraled in figure 5.8
by showing the various stages during the adaptation process. Figure 5.8(a) shows the
initial mesh employed for the computation of the supersonic flow past a double
ellipse configuration. The Mach number conlours of the solution obtained on the
inital mesh are shown in figure 5.8(b). The flow condilions are a free stream Mach

number of 8.15 and an angle of attack of 30 °. The application of expression 5.16 Io
the solution oblained produces the distribution of spacing and stretching displayed in
figures 5.8(c) and 5.8(d) respectively. In figure 5.8(c) the contours corresponding
to the value of the minimum spacing occuring in any direction is shown, whereas in
figure 5.9(d) lhe value of and the direction of stretching is displayed in the form of a
vector field. The magnitude of the vector represents the amount of stretching i.e.
ratio between maximum and minimum spacings, and the direction of lhe vector
indicates the direction along which the spacing is maximum. In Ihis example
expression 5.17 has been applied to lhe computed spacings wilh values of 8max = 15
and F,m_,_= 0.9. Figures 5.8(e) - 5.8(h) show various stages during the regeneration
process. It can be observed how small elements are generated firsl as discussed in
section 3.5. The completed mesh is shown in figure 5.8(i) and Ihe solution computed
on this adapted mesh is shown in figure 5.8(j). It can be observed how a very
significant improvemenl in the solution is oblained using, in this case, a single
adaptalion.

[__s_ti_matLngthe number of elements to be generated.

The regeneralion process uses the current mesh as the background mesh. Such a
background mesh clearly represents accuralely the geomelry of lhe computational
domain. In this case, the number of elements to be generaled, denoted by Ne, can be
estimaled as follows. Once the values of C, 8max, and 8m,_ have been selected, the
spalial distribution of mesh parameters 8_, g_; i=1..... N is computed. For each

element of the background mesh, Ihe values of lhe transformation T is compuled at
the centroid. The transformation is applied to the nodes of the element and its volume
V_ in the normalised space is computed. The number of elemenls Ne is assumed to be
proporlional to the tolal volume in the unstrelched space, i.e.

Nb

Ne = X. _ Ve (5.18)
e=l

where N b iS the number of elements in the background mesh and X.is a conslanl. The
value of _[ is calculated as a slalistical average of the values oblained for several
generaled meshes. The calculated value is X = 9. This procedure gives estimates of
the value of Ne with an error of less Ihan 20%, which is accurate enough for most
practical purposes. If the estimated value of Ne is either too big or too small, lhen
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Figure 5.8 Illustration of the adaptive remeshing procedure
(n) Initial mesh
(b) Mach number solution obtained on the initial mesh (M.=8.15, rx= 30 °)

(c) Computed distibution of minimum spacings ('_min-- 9, 6max = 15)
(d) Computed values and direclions for the stretching
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(e) (f)

(h)
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_ = 0.9- 15
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Figure 5.8

REGENERATEDMESH

3 181 elements
1 664 points

MACH NUMBER SOLUTION

Illuslration of the adaptive remeshing procedure (continuation)
(e) - (h) different stages during the regeneration proccess
(i) Final regenerated mesh
(j) Solution obtained on adaptively regenerated mesh (M.=8,15, o.= 30°)
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the valueof C is reduced or increased and the process repeated until the value of C
produces a number of elements which is regarded as being computatlonally
acceplable.

AlZe.l_atio n exam,el__

J_2JJbLe,_,j]jg_.- The adaptive remeshing procedure is applied twice to the problem of
flow past a double ellipse. The flow conditions are those previously considered for
this configuration. The inital and two adapled meshes and the solutions for Mach
number are shown in figure 5.9. The characteristics of the meshes employed are
displayed in table 5.1.

Mesh Elements Points 8min

1 2027 1110 4.0

2 3557 1864 0.9

3 6403 3294 0.25

Table 5.1 Double ellipse (M==8.15, rz=30o): mesh characteristics.

II is observed how the application of the adaplive procedure, when compared 1o Ihe
enrichment stralegy, allows for a larger increase in the resolution al the expense of
a smaller increase on total number of elements. On the olher hand the remeshing
procedure does not suffer from the limitations inherenl in the mesh movement
algorithm.

.Shock interaction on a sweD! cylinder.- This is a problem of practical interest

because ils implicalions to the design of hypersonic vehicles [53]. The experimental
apparalus and the computational domain adopted are shown diagramatically in figure
5.10(a). The numerical simulation has been carried out for a sweep angle of 15o on
a cylinder of diameter D equal to 3 inches and length L equal to 9 Inches. The
undislurbed free stream Mach number is 8.03. The fluid which has been turned by
lhe shock generator enters the compulational domain wilh a Mach number of 5.26.
The inilial mesh and those obtained after two adaplive remeshings and the density
conlours distribulion are shown in figure 5.10(b). The characleristics of lhe
meshes are shown in lable 5.2.

I_ M sh Elements Points 5rain 8max

51 190 10 041 1.0 1.0

100 071 18 660 0.5 3.0..... 171 800 31 083 0.18 3.0

Table 5.2 3D Shock interaclion on a swept cylinder: mesh characterislics.
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(b)

SE RD MESH

51,190 elements 100,071 elements 171,800 elements

10,041 points 18,660 points 31,083 points

_mln = 1.0 8rain " 0.5

DENSITY SOLUTION

_min "O. 18

_max ="3.0

Figure 5.10 Shock interaction on a swept cylinder (M_=8.03, 4=15 °) (continuation)

(b) Sequence of meshes and density solutions obtained using adaptive remeshing
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Figure 5.11 Generic fighler configuration (M.=2, o_=3.79 o)

(a) Geometry definition - aircraft surface and outer boundary.
(b) Initial mesh and computed pressure solution in the symmetry plane.
(c) Second mesh and computed pressure solution in the symmetry plane.
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Figure 5.11 Generic fighter configuralion (M_=2, (x=3.79°)(continuation)

(d) Initial mesh and computed pressure solution.

(e) Second mesh and computed pressure solution.



The potential advantages of lhe adaptive remeshing procedure are clearly illustrated
in this three dimensional example. The final adapted mesh has a resolution of more
than five limes thai of the inital mesh whereas the total number of degrees of
freedom increases by only a factor of 3.4. The effects of the three dimensional
adaptation are best shown in figure 5.10(c) which shows the cross section through
the meshes half way along the cylinder. Two views of the three dimensional mesh for
the final adaptation together with the solution obtained are shown in figures 5.10(d)
and 5.10(e) respectively.

Generic fiohter configuration.- This example concerns the simulation of lhe flow
past a generic fighter configuration. The generation of the initial mesh for thai
problem has been described in section 3.9. The flow conditions considered correspond
lo a free stream Mach number of 2 at an angle of attack of 3.79 °. The engine inlet is
modelled by prescribing a Mach number of 0.3 within the engine. At the outlet
supersonic flow conditions are assumed. Because of the symmetry of the problem
only half of the domain is modelled. The spline definition of the geometry is shown in
figure 5.1 l(a) and consists of 23 surface components and 53 curve components. Two
meshes have been employed in an initial demonstration of adaptive remeshing applied
to full aircraft configuration. The inital mesh contains 76,522 tetrahedral elements
with 4,128 triangular faces on the boundary. A preliminary first solution was
computed using 1,500 iterations of the basic explicil scheme. A second mesh was
adaptively generated using the Mach number as the key variable in the error
analysis. The new mesh is formed by 70,125 telrahedra with 7,262 triangles on the
boundary. It is interesting to notice that the number of elements in the two meshes is
approximately the same whereas the number of faces on the surface has increased.
Moreover, the minimum spacing on Ihe adapled mesh is 3.5 limes smaller than the
one on the initial mesh, thus indicating also an increase in the mesh resolution. The
solution on Ihe new mesh was obtained after 2,000 iterations. The meshes and
computed solutions at the plane of symmetry are shown in figures 5.11(b) for lhe
initial mesh and 5.11(c) for the adapted mesh. The effect of the adaptation in the
vicinity of the engine inlet can be observed. The mesh and solution on the surface of
the aircraft is shown in figure 5.11(d) for the initial mesh and in figure 5.11(e)
for the adapted mesh. In lhis case the adaptation is very mild and is hardly noticeable.
The main reason for this is that the resolution on the initial grid is rather poor and
some importanl flow features are not properly captured.
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6.TRANSIENT FLOWS

this section has been written in collaboration with

J. Probert and O. Hassan
Computational Dynamics Research

Innovation Centre, University College Swansea
SWANSEA SA2 8PP, UK

6. 1 Transient flows

Solutions of the Euler equations are smooth over large areas of the computational
domain and exhibit large gradients in localised parts of the flow. In transient
simulations, these localised regions will generally move through the computational
domain and may sweep across very large areas e.g. the case of flows involving
propagating shocks. This means that, unless adaptivity is used, a globally fine mesh
will be necessary to provide the required resolution. Thus lhe use of adaptivity, with
the possibilily for local mesh refinement and coarsening, offers the potential for
considerable computational savings. We have already seen lhat only a few mesh
adaptations are generally needed to obtain a salisfaclory solution 1o a steady problem,
but we can expect that mesh adaptation will have to be performed several thousand
times in a transient flow simulation. Thus any potential computational savings which
appear to be offered by the use of adaptivity in this case will only be realised if the
adaptation of the mesh can be performed in an efficient manner. Successful
implementations of adaptivity to the solution of lransient problems have already
been made within the context of both structured [54] and unslructured meshes
155,561.

6.2 Mesh enrichment

An obvious method of achieving mesh adaptation for transient flow Simulation is the
extension of the mesh enrichment ideas introduced above for the solution of steady
state problems. An exlremely successful implemenlation on unstructured triangular
meshes has been made by LOhner [55]. In his method, the grid is automatically
refined and de-refined as necessary according to the results of an error Indicating
process. An example [56] of the application of this procedure to shock-bubble
interaction problem is shown in figure 6.1. This problem involves the interaction
between a weak shock, travelling at a Mach number of 1.29 in air, and a bubble of
heavier material (freon). From the figure it can be seen how the shock speed inside
the bubble decreases, owing to the higher density of the freon, whereas the outer
shock bends over. The inner shock focuses at the right hand end of the bubble,
producing a significant over-pressure and intialing a small circular blast wave.

This method has also recently been applied to three dimensional flow simulations
[57], but much less resolution can now achieved, as only a limited number of
refinement levels can be afforded computationally.

6.3 Transient flows involving moving bodies

The complexily involved in transienl flow simulalion increases if one considers
problems in which certain boundaries of the computational domain are allowed to
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Figure 6.1 Shock-bubble inleraclion problem using lransient adaptation based on enrichment

(a) Initial mesh and solution contours (from [56])
(b) Mesh and solution at t=0.6
(c) Mesh and solution at t=O.7
(d) Mesh and solution at I=0.8
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move,so Ihal the geometry of the domain changes with time. This means thai the
mesh must be modified during the computation in order to accommodale these

geometrical changes. One approach which has proved to be successful for tackling
such problems is the chimera approach, in which each individual geometry
component can have its own associaled structured mesh which can move
independently of the other meshes. Three dimensional viscous simulations involving
moving bodies have already been produced by this method [58]. Unstructured meshes
have been applied to the solution of inviscid lwo dimensional transient flows
involving moving bodies [59,60], using a method which is an extension of lhe
remeshing procedures presented in section 5.6 and lhis is the approach that will be
presenled here.

We restrict our consideralion to two dimensional invlscid flows and note thal the
basic variational stalemenl for the problem will need 1o be modified to account for
the fact that the spatial domain _ is varying with time. Suppose that we have the
solution .U_, at a certain time level In. We attempt to satisfy lhe compressible Euler

equations (1.38) over the space-time domain D = (_(I), tn <- t _<In,,,). TO express
this problem in a variational form we need to introduce suitable trial and weighting
function sets. We assume, for the purposes of this discussion, that the conditions on
the boundary 1"of _ can be expressed in the form

U : 0 on r(t) (6.1)

Although such conditions are somewhal unrealislic, the aclual boundary conditions
which would need Io be applied in the simulalion of a given problem can be readily
incorporated by making appropriate modifications to the following analysis. We maydefine

3. = ( U I U = 0 on r; U = _ on _ at t = t.}

w = {WlW= 0on 1-}
(6.2)

and a variational formulation of the problem can be stated as • find U in 3" such thai

tn+l

._ W _-+ _xx + _yy dQdl
I n

=0 (6.3)

for every W in It). We will assume thai the spatial domain .Q has been discretised

using 3 noded linear triangular elements, with inlerior nodes numbered from 1 to p
and introduce the sets

3.(p) = { .U.(p) I U_(p) ---- M1UI+M2_U.2+ ..... +Mp .Up: U._p)=0 on F; .U.(p)= U.n on _ at I = In}

(6.4)
W(p) = {W(p) IW(p)= alMl+a2M2+..+apMp ;W(p)=0 on r'}
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In the approach which is to be followed here, certain nodes In the mesh will be fixed,
while others will move with a prescribed velocity. The shape functions Mj are linear
functions of space and time which satisfy

Mj(x, tn) = Nn(x) Mj(x, tn+l) = Nn+l(x) (6.5)

where Nn is the standard finite element shape function, defined in section 1.2,
associated to node J at time t,. Working with the function sets defined in equation

(6.4), the Galerkin approximation statement takes the form • find .U..(p)in 'T(p) such
lhal

tn+l

oo,,t
I n

=.0. (6.6)

for J = 1,2 ...... p. Considering the first term appearing in this integral, it is possible
to show that

_-_t d! Mj'U-(p) d_ "I y-'BMJ-U-(p) dr- I aMJI MJ d_ = _l: r¢2 n --_-L,_p) d_ (6.7)

where y_denotes the velocity of the moving nodes. Wilh y.(p) = (vx, vy) interpolated
linearly between the nodal values of v, an observer moving with the mesh will not
detect any change in the shape functions i.e.

DMj aMj aMj+ o_Mj
Dt = at + v, _ vy a--y-= 0 (6.8)

where D/Dr denotes differentiation following the moving mesh and so

Finally, combining equations (6.6), (6.7)
satisfies

I MJ ,.U..(p)d_ - J Mj .LL(p)d.Q
f

_'_n+ I Qn

where

and (6.9), lhe Galerkin approximation

|n+l

fI Mj + ay J
tn

(6.1o)
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_p)+ -- F.,_Q)- Vx U_(p) + = vyU p (6.11)

Inserting the assumed form for .U.(p)from equation (6.4),

tn+l

[M U_]J -[M U.Jan o a + dQ dt
tn

(6.12)

The integral appearing here can be evaluated by first employing one point integration
in time (at l= ln.1/2) and then using a two-step approximation [18,19]. Artificial
viscosity will again be needed with a scheme of this type and the resolution of the
resulting scheme may be improved by the use of the FCT ideas mentioned in Section
1.3.

6.4 Adaptive remeshing for transient flows involving moving bodies

The method described above, whereby a grid may be adapted by remeshing, Is a
nalural approach to follow for the simulation of flows involving moving bodies. II
will be assumed lhat the motion of any moving boundary is prescribed and the
objective is to determine the resulting flow field. The description of an algorithm
which can be devised to advance the solution of equation (6.11) in time can be
written as follows:

. Generate an initial mesh to represent the computational domain and fo
adequately resolve the initial solution.

2. Start the timeslep loop

2.1
2.2
2.3

2.4

2.5

2.6

Advance the solution one timestep
Update the coordinates of the points on the moving boundaries
Use an error indicator to examine the current solution and define an

'optimal' distribution of mesh spacing and slrelching
Compare the current mesh with the 'oplimar mesh. Delete the
elements whose size and shape is log different from the optimal
Triangulate the regions where elements have been deleted according to
the new distribution of mesh parameters
Determine, by interpolation, the flow variables at the new nodes

End the timeslep loop

It is apparent that the crucial phase in this process is the mesh adaplalion in sleps
2.3-2.5. The mechanics of this process is illustrated diagramalically in figure 6.2.
The success of the procedure depends upon the reliability of the error indicator
which is employed. The indicator of equation (5.9) has again been used for this
application.

Application examples

1D Shock DroDaaation.- The first example considered consists of a two dimensional
simulation of the transienl development of the flow in shock tube. The purpose of this
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Figure 6.2 Illustration of the adaptive remeshing procedure applied to transient problems
(a) Initial mesh
(b) Marked unwanted nodes and elements

(c) Elements are removed from the mesh

(d) Boundary sides are generated according to the new spacing distribution to form
a closed loop arround each hole

(e) Triangulation of the holes using the advancing front and the new distribution of
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Figure 6.3 Shock tube example using adaplively refined meshes.
(a) Adapted mesh and density contours at t=0
(b) Adapted mesh and density contours at t=4
(c) Adapted mesh and density contours at t=8
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Figure 6.4

(b)

(c)

(d)

Space shuttle vehicle and booster rocket simulation (M.=2, _.=-4o). The

shuttle moves upwards and away from the rocket with a prescribed molion.
Sequence of meshes and pressure solutions obtained during the transient
simulalion starting from a steady state solution. The meshes consist ot: (a)
7,870 elements and 4,130 points (b) 7,377 elements and 3,867 points
('c) 6.847 elements and 3,580 points and (d) 8,459 elemenls and 4,379
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